Question
Solve the equation
Solve for x
Solve for y
x=0x=128y5
Evaluate
x2−4y2×4x×8y3=0
Multiply
More Steps

Evaluate
4y2×4x×8y3
Multiply the terms
More Steps

Evaluate
4×4×8
Multiply the terms
16×8
Multiply the numbers
128
128y2xy3
Multiply the terms with the same base by adding their exponents
128y2+3x
Add the numbers
128y5x
x2−128y5x=0
Factor the expression
More Steps

Evaluate
x2−128y5x
Rewrite the expression
x×x−x×128y5
Factor out x from the expression
x(x−128y5)
x(x−128y5)=0
When the product of factors equals 0,at least one factor is 0
x=0x−128y5=0
Solution
More Steps

Evaluate
x−128y5=0
Move the expression to the right-hand side and change its sign
x=0+128y5
Add the terms
x=128y5
x=0x=128y5
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
x2−4y2×4x×8y3=0
Multiply
More Steps

Evaluate
4y2×4x×8y3
Multiply the terms
More Steps

Evaluate
4×4×8
Multiply the terms
16×8
Multiply the numbers
128
128y2xy3
Multiply the terms with the same base by adding their exponents
128y2+3x
Add the numbers
128y5x
x2−128y5x=0
To test if the graph of x2−128y5x=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2−128(−y)5(−x)=0
Evaluate
More Steps

Evaluate
(−x)2−128(−y)5(−x)
Multiply the terms
More Steps

Multiply the terms
128(−y)5(−x)
Any expression multiplied by 1 remains the same
−128(−y)5x
Multiply the terms
−(−128y5x)
Multiply the first two terms
128y5x
(−x)2−128y5x
Rewrite the expression
x2−128y5x
x2−128y5x=0
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=4128sin5(θ)cos(θ)r=−4128sin5(θ)cos(θ)
Evaluate
x2−4y2×4x×8y3=0
Evaluate
More Steps

Evaluate
x2−4y2×4x×8y3
Multiply
More Steps

Evaluate
4y2×4x×8y3
Multiply the terms
128y2xy3
Multiply the terms with the same base by adding their exponents
128y2+3x
Add the numbers
128y5x
x2−128y5x
x2−128y5x=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(cos(θ)×r)2−128(sin(θ)×r)5cos(θ)×r=0
Factor the expression
−128sin5(θ)cos(θ)×r6+cos2(θ)×r2=0
Factor the expression
r2(−128sin5(θ)cos(θ)×r4+cos2(θ))=0
When the product of factors equals 0,at least one factor is 0
r2=0−128sin5(θ)cos(θ)×r4+cos2(θ)=0
Evaluate
r=0−128sin5(θ)cos(θ)×r4+cos2(θ)=0
Solution
More Steps

Factor the expression
−128sin5(θ)cos(θ)×r4+cos2(θ)=0
Subtract the terms
−128sin5(θ)cos(θ)×r4+cos2(θ)−cos2(θ)=0−cos2(θ)
Evaluate
−128sin5(θ)cos(θ)×r4=−cos2(θ)
Divide the terms
r4=128sin5(θ)cos(θ)
Evaluate the power
r=±4128sin5(θ)cos(θ)
Separate into possible cases
r=4128sin5(θ)cos(θ)r=−4128sin5(θ)cos(θ)
r=0r=4128sin5(θ)cos(θ)r=−4128sin5(θ)cos(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=320xy4x−64y5
Calculate
x2−4y24x8y3=0
Simplify the expression
x2−128y5x=0
Take the derivative of both sides
dxd(x2−128y5x)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2−128y5x)
Use differentiation rules
dxd(x2)+dxd(−128y5x)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−128y5x)
Evaluate the derivative
More Steps

Evaluate
dxd(−128y5x)
Use differentiation rules
dxd(−128x)×y5−128x×dxd(y5)
Evaluate the derivative
−128y5−128x×dxd(y5)
Evaluate the derivative
−128y5−640xy4dxdy
2x−128y5−640xy4dxdy
2x−128y5−640xy4dxdy=dxd(0)
Calculate the derivative
2x−128y5−640xy4dxdy=0
Move the expression to the right-hand side and change its sign
−640xy4dxdy=0−(2x−128y5)
Subtract the terms
More Steps

Evaluate
0−(2x−128y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+128y5
Removing 0 doesn't change the value,so remove it from the expression
−2x+128y5
−640xy4dxdy=−2x+128y5
Divide both sides
−640xy4−640xy4dxdy=−640xy4−2x+128y5
Divide the numbers
dxdy=−640xy4−2x+128y5
Solution
More Steps

Evaluate
−640xy4−2x+128y5
Rewrite the expression
−640xy42(−x+64y5)
Cancel out the common factor 2
−320xy4−x+64y5
Use b−a=−ba=−ba to rewrite the fraction
−320xy4−x+64y5
Rewrite the expression
320xy4x−64y5
dxdy=320xy4x−64y5
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=25600y9x248y5x+6144y10−x2
Calculate
x2−4y24x8y3=0
Simplify the expression
x2−128y5x=0
Take the derivative of both sides
dxd(x2−128y5x)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2−128y5x)
Use differentiation rules
dxd(x2)+dxd(−128y5x)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−128y5x)
Evaluate the derivative
More Steps

Evaluate
dxd(−128y5x)
Use differentiation rules
dxd(−128x)×y5−128x×dxd(y5)
Evaluate the derivative
−128y5−128x×dxd(y5)
Evaluate the derivative
−128y5−640xy4dxdy
2x−128y5−640xy4dxdy
2x−128y5−640xy4dxdy=dxd(0)
Calculate the derivative
2x−128y5−640xy4dxdy=0
Move the expression to the right-hand side and change its sign
−640xy4dxdy=0−(2x−128y5)
Subtract the terms
More Steps

Evaluate
0−(2x−128y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+128y5
Removing 0 doesn't change the value,so remove it from the expression
−2x+128y5
−640xy4dxdy=−2x+128y5
Divide both sides
−640xy4−640xy4dxdy=−640xy4−2x+128y5
Divide the numbers
dxdy=−640xy4−2x+128y5
Divide the numbers
More Steps

Evaluate
−640xy4−2x+128y5
Rewrite the expression
−640xy42(−x+64y5)
Cancel out the common factor 2
−320xy4−x+64y5
Use b−a=−ba=−ba to rewrite the fraction
−320xy4−x+64y5
Rewrite the expression
320xy4x−64y5
dxdy=320xy4x−64y5
Take the derivative of both sides
dxd(dxdy)=dxd(320xy4x−64y5)
Calculate the derivative
dx2d2y=dxd(320xy4x−64y5)
Use differentiation rules
dx2d2y=(320xy4)2dxd(x−64y5)×320xy4−(x−64y5)×dxd(320xy4)
Calculate the derivative
More Steps

Evaluate
dxd(x−64y5)
Use differentiation rules
dxd(x)+dxd(−64y5)
Use dxdxn=nxn−1 to find derivative
1+dxd(−64y5)
Evaluate the derivative
1−320y4dxdy
dx2d2y=(320xy4)2(1−320y4dxdy)×320xy4−(x−64y5)×dxd(320xy4)
Calculate the derivative
More Steps

Evaluate
dxd(320xy4)
Use differentiation rules
dxd(320)×xy4+320×dxd(x)×y4+320x×dxd(y4)
Use dxdxn=nxn−1 to find derivative
dxd(320)×xy4+320y4+320x×dxd(y4)
Evaluate the derivative
dxd(320)×xy4+320y4+1280xy3dxdy
Calculate
320y4+1280xy3dxdy
dx2d2y=(320xy4)2(1−320y4dxdy)×320xy4−(x−64y5)(320y4+1280xy3dxdy)
Calculate
More Steps

Evaluate
(1−320y4dxdy)×320xy4
Use the the distributive property to expand the expression
1×320xy4−320y4dxdy×320xy4
Any expression multiplied by 1 remains the same
320xy4−320y4dxdy×320xy4
Multiply the terms
320xy4−102400y8dxdy×x
Use the commutative property to reorder the terms
320xy4−102400y8xdxdy
dx2d2y=(320xy4)2320xy4−102400y8xdxdy−(x−64y5)(320y4+1280xy3dxdy)
Calculate
More Steps

Evaluate
(x−64y5)(320y4+1280xy3dxdy)
Use the the distributive property to expand the expression
(x−64y5)×320y4+(x−64y5)×1280xy3dxdy
Multiply the terms
320xy4−20480y9+(x−64y5)×1280xy3dxdy
Multiply the terms
320xy4−20480y9+1280x2y3dxdy−81920y8xdxdy
dx2d2y=(320xy4)2320xy4−102400y8xdxdy−(320xy4−20480y9+1280x2y3dxdy−81920y8xdxdy)
Calculate
More Steps

Calculate
320xy4−102400y8xdxdy−(320xy4−20480y9+1280x2y3dxdy−81920y8xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
320xy4−102400y8xdxdy−320xy4+20480y9−1280x2y3dxdy+81920y8xdxdy
The sum of two opposites equals 0
0−102400y8xdxdy+20480y9−1280x2y3dxdy+81920y8xdxdy
Remove 0
−102400y8xdxdy+20480y9−1280x2y3dxdy+81920y8xdxdy
Add the terms
−20480y8xdxdy+20480y9−1280x2y3dxdy
dx2d2y=(320xy4)2−20480y8xdxdy+20480y9−1280x2y3dxdy
Calculate
More Steps

Evaluate
(320xy4)2
Evaluate the power
3202x2(y4)2
Evaluate the power
3202x2y8
dx2d2y=3202x2y8−20480y8xdxdy+20480y9−1280x2y3dxdy
Calculate
dx2d2y=80x2y5−16y5xdxdy+16y6−x2dxdy
Use equation dxdy=320xy4x−64y5 to substitute
dx2d2y=80x2y5−16y5x×320xy4x−64y5+16y6−x2×320xy4x−64y5
Solution
More Steps

Calculate
80x2y5−16y5x×320xy4x−64y5+16y6−x2×320xy4x−64y5
Multiply the terms
80x2y5−20y(x−64y5)+16y6−x2×320xy4x−64y5
Multiply the terms
More Steps

Multiply the terms
−x2×320xy4x−64y5
Cancel out the common factor x
−x×320y4x−64y5
Multiply the terms
−320y4x(x−64y5)
80x2y5−20y(x−64y5)+16y6−320y4x(x−64y5)
Calculate the sum or difference
More Steps

Evaluate
−20y(x−64y5)+16y6−320y4x(x−64y5)
Reduce fractions to a common denominator
−20×16y4y(x−64y5)×16y4+20×16y416y6×20×16y4−320y4x(x−64y5)
Multiply the numbers
−320y4y(x−64y5)×16y4+20×16y416y6×20×16y4−320y4x(x−64y5)
Multiply the numbers
−320y4y(x−64y5)×16y4+320y416y6×20×16y4−320y4x(x−64y5)
Write all numerators above the common denominator
320y4−y(x−64y5)×16y4+16y6×20×16y4−x(x−64y5)
Multiply the terms
320y4−(16y5x−1024y10)+16y6×20×16y4−x(x−64y5)
Multiply the terms
320y4−(16y5x−1024y10)+5120y10−x(x−64y5)
Multiply the terms
320y4−(16y5x−1024y10)+5120y10−(x2−64xy5)
Calculate the sum or difference
320y448y5x+6144y10−x2
80x2y5320y448y5x+6144y10−x2
Multiply by the reciprocal
320y448y5x+6144y10−x2×80x2y51
Multiply the terms
320y4×80x2y548y5x+6144y10−x2
Multiply the terms
More Steps

Evaluate
320y4×80x2y5
Multiply the numbers
25600y4x2y5
Multiply the terms
25600y9x2
25600y9x248y5x+6144y10−x2
dx2d2y=25600y9x248y5x+6144y10−x2
Show Solution
