Question
Find the roots
x1=255−5157,x2=255+5157
Alternative Form
x1≈−3.82491,x2≈58.82491
Evaluate
x2−55x−225
To find the roots of the expression,set the expression equal to 0
x2−55x−225=0
Substitute a=1,b=−55 and c=−225 into the quadratic formula x=2a−b±b2−4ac
x=255±(−55)2−4(−225)
Simplify the expression
More Steps

Evaluate
(−55)2−4(−225)
Multiply the numbers
More Steps

Evaluate
4(−225)
Multiplying or dividing an odd number of negative terms equals a negative
−4×225
Multiply the numbers
−900
(−55)2−(−900)
Rewrite the expression
552−(−900)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
552+900
Evaluate the power
3025+900
Add the numbers
3925
x=255±3925
Simplify the radical expression
More Steps

Evaluate
3925
Write the expression as a product where the root of one of the factors can be evaluated
25×157
Write the number in exponential form with the base of 5
52×157
The root of a product is equal to the product of the roots of each factor
52×157
Reduce the index of the radical and exponent with 2
5157
x=255±5157
Separate the equation into 2 possible cases
x=255+5157x=255−5157
Solution
x1=255−5157,x2=255+5157
Alternative Form
x1≈−3.82491,x2≈58.82491
Show Solution
