Question
Solve the equation
Solve for x
Solve for y
x=y3x=−y3
Evaluate
x2−y6=0
Move the expression to the right-hand side and change its sign
x2=0+y6
Add the terms
x2=y6
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±y6
Simplify the expression
x=±y3
Remove the absolute value bars
x=±y3
Solution
x=y3x=−y3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
x2−y6=0
To test if the graph of x2−y6=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2−(−y)6=0
Evaluate
More Steps

Evaluate
(−x)2−(−y)6
Rewrite the expression
x2−(−y)6
Rewrite the expression
x2−y6
x2−y6=0
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=4sin6(θ)cos2(θ)r=−4sin6(θ)cos2(θ)
Evaluate
x2−y6=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(cos(θ)×r)2−(sin(θ)×r)6=0
Factor the expression
−sin6(θ)×r6+cos2(θ)×r2=0
Factor the expression
r2(−sin6(θ)×r4+cos2(θ))=0
When the product of factors equals 0,at least one factor is 0
r2=0−sin6(θ)×r4+cos2(θ)=0
Evaluate
r=0−sin6(θ)×r4+cos2(θ)=0
Solution
More Steps

Factor the expression
−sin6(θ)×r4+cos2(θ)=0
Subtract the terms
−sin6(θ)×r4+cos2(θ)−cos2(θ)=0−cos2(θ)
Evaluate
−sin6(θ)×r4=−cos2(θ)
Divide the terms
r4=sin6(θ)cos2(θ)
Evaluate the power
r=±4sin6(θ)cos2(θ)
Separate into possible cases
r=4sin6(θ)cos2(θ)r=−4sin6(θ)cos2(θ)
r=0r=4sin6(θ)cos2(θ)r=−4sin6(θ)cos2(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=3y5x
Calculate
x2−y6=0
Take the derivative of both sides
dxd(x2−y6)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2−y6)
Use differentiation rules
dxd(x2)+dxd(−y6)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−y6)
Evaluate the derivative
More Steps

Evaluate
dxd(−y6)
Use differentiation rules
dyd(−y6)×dxdy
Evaluate the derivative
−6y5dxdy
2x−6y5dxdy
2x−6y5dxdy=dxd(0)
Calculate the derivative
2x−6y5dxdy=0
Move the expression to the right-hand side and change its sign
−6y5dxdy=0−2x
Removing 0 doesn't change the value,so remove it from the expression
−6y5dxdy=−2x
Divide both sides
−6y5−6y5dxdy=−6y5−2x
Divide the numbers
dxdy=−6y5−2x
Solution
dxdy=3y5x
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9y113y6−5x2
Calculate
x2−y6=0
Take the derivative of both sides
dxd(x2−y6)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2−y6)
Use differentiation rules
dxd(x2)+dxd(−y6)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−y6)
Evaluate the derivative
More Steps

Evaluate
dxd(−y6)
Use differentiation rules
dyd(−y6)×dxdy
Evaluate the derivative
−6y5dxdy
2x−6y5dxdy
2x−6y5dxdy=dxd(0)
Calculate the derivative
2x−6y5dxdy=0
Move the expression to the right-hand side and change its sign
−6y5dxdy=0−2x
Removing 0 doesn't change the value,so remove it from the expression
−6y5dxdy=−2x
Divide both sides
−6y5−6y5dxdy=−6y5−2x
Divide the numbers
dxdy=−6y5−2x
Cancel out the common factor −2
dxdy=3y5x
Take the derivative of both sides
dxd(dxdy)=dxd(3y5x)
Calculate the derivative
dx2d2y=dxd(3y5x)
Use differentiation rules
dx2d2y=(3y5)2dxd(x)×3y5−x×dxd(3y5)
Use dxdxn=nxn−1 to find derivative
dx2d2y=(3y5)21×3y5−x×dxd(3y5)
Calculate the derivative
More Steps

Evaluate
dxd(3y5)
Simplify
3×dxd(y5)
Rewrite the expression
3×5y4dxdy
Multiply the numbers
15y4dxdy
dx2d2y=(3y5)21×3y5−x×15y4dxdy
Any expression multiplied by 1 remains the same
dx2d2y=(3y5)23y5−x×15y4dxdy
Use the commutative property to reorder the terms
dx2d2y=(3y5)23y5−15xy4dxdy
Calculate
More Steps

Evaluate
(3y5)2
Evaluate the power
32(y5)2
Evaluate the power
9(y5)2
Evaluate the power
9y10
dx2d2y=9y103y5−15xy4dxdy
Calculate
dx2d2y=3y6y−5xdxdy
Use equation dxdy=3y5x to substitute
dx2d2y=3y6y−5x×3y5x
Solution
More Steps

Calculate
3y6y−5x×3y5x
Multiply the terms
More Steps

Multiply the terms
5x×3y5x
Multiply the terms
3y55x×x
Multiply the terms
3y55x2
3y6y−3y55x2
Subtract the terms
More Steps

Simplify
y−3y55x2
Reduce fractions to a common denominator
3y5y×3y5−3y55x2
Write all numerators above the common denominator
3y5y×3y5−5x2
Multiply the terms
3y53y6−5x2
3y63y53y6−5x2
Multiply by the reciprocal
3y53y6−5x2×3y61
Multiply the terms
3y5×3y63y6−5x2
Multiply the terms
More Steps

Evaluate
3y5×3y6
Multiply the numbers
9y5×y6
Multiply the terms
9y11
9y113y6−5x2
dx2d2y=9y113y6−5x2
Show Solution
