Question
Solve the equation
Solve for x
Solve for y
x=y5+y10+50x=y5−y10+50
Evaluate
x2−2xy3×y2=50
Multiply
More Steps

Evaluate
2xy3×y2
Multiply the terms with the same base by adding their exponents
2xy3+2
Add the numbers
2xy5
x2−2xy5=50
Rewrite the expression
x2−2y5x=50
Move the expression to the left side
x2−2y5x−50=0
Substitute a=1,b=−2y5 and c=−50 into the quadratic formula x=2a−b±b2−4ac
x=22y5±(−2y5)2−4(−50)
Simplify the expression
More Steps

Evaluate
(−2y5)2−4(−50)
Multiply the numbers
More Steps

Evaluate
4(−50)
Multiplying or dividing an odd number of negative terms equals a negative
−4×50
Multiply the numbers
−200
(−2y5)2−(−200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−2y5)2+200
Evaluate the power
4y10+200
x=22y5±4y10+200
Simplify the radical expression
More Steps

Evaluate
4y10+200
Factor the expression
4(y10+50)
The root of a product is equal to the product of the roots of each factor
4×y10+50
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2y10+50
x=22y5±2y10+50
Separate the equation into 2 possible cases
x=22y5+2y10+50x=22y5−2y10+50
Simplify the expression
More Steps

Evaluate
x=22y5+2y10+50
Divide the terms
More Steps

Evaluate
22y5+2y10+50
Rewrite the expression
22(y5+y10+50)
Reduce the fraction
y5+y10+50
x=y5+y10+50
x=y5+y10+50x=22y5−2y10+50
Solution
More Steps

Evaluate
x=22y5−2y10+50
Divide the terms
More Steps

Evaluate
22y5−2y10+50
Rewrite the expression
22(y5−y10+50)
Reduce the fraction
y5−y10+50
x=y5−y10+50
x=y5+y10+50x=y5−y10+50
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
x2−2xy3×y2=50
Multiply
More Steps

Evaluate
2xy3×y2
Multiply the terms with the same base by adding their exponents
2xy3+2
Add the numbers
2xy5
x2−2xy5=50
To test if the graph of x2−2xy5=50 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2−2(−x)(−y)5=50
Evaluate
More Steps

Evaluate
(−x)2−2(−x)(−y)5
Multiply the terms
More Steps

Multiply the terms
2(−x)(−y)5
Any expression multiplied by 1 remains the same
−2x(−y)5
Multiply the terms
−(−2xy5)
Multiply the first two terms
2xy5
(−x)2−2xy5
Rewrite the expression
x2−2xy5
x2−2xy5=50
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=5xy4x−y5
Calculate
x2−2xy3y2=50
Simplify the expression
x2−2xy5=50
Take the derivative of both sides
dxd(x2−2xy5)=dxd(50)
Calculate the derivative
More Steps

Evaluate
dxd(x2−2xy5)
Use differentiation rules
dxd(x2)+dxd(−2xy5)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−2xy5)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy5)
Use differentiation rules
dxd(−2x)×y5−2x×dxd(y5)
Evaluate the derivative
−2y5−2x×dxd(y5)
Evaluate the derivative
−2y5−10xy4dxdy
2x−2y5−10xy4dxdy
2x−2y5−10xy4dxdy=dxd(50)
Calculate the derivative
2x−2y5−10xy4dxdy=0
Move the expression to the right-hand side and change its sign
−10xy4dxdy=0−(2x−2y5)
Subtract the terms
More Steps

Evaluate
0−(2x−2y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+2y5
Removing 0 doesn't change the value,so remove it from the expression
−2x+2y5
−10xy4dxdy=−2x+2y5
Divide both sides
−10xy4−10xy4dxdy=−10xy4−2x+2y5
Divide the numbers
dxdy=−10xy4−2x+2y5
Solution
More Steps

Evaluate
−10xy4−2x+2y5
Rewrite the expression
−10xy42(−x+y5)
Cancel out the common factor 2
−5xy4−x+y5
Use b−a=−ba=−ba to rewrite the fraction
−5xy4−x+y5
Rewrite the expression
5xy4x−y5
dxdy=5xy4x−y5
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=25y9x23y5x+6y10−4x2
Calculate
x2−2xy3y2=50
Simplify the expression
x2−2xy5=50
Take the derivative of both sides
dxd(x2−2xy5)=dxd(50)
Calculate the derivative
More Steps

Evaluate
dxd(x2−2xy5)
Use differentiation rules
dxd(x2)+dxd(−2xy5)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−2xy5)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy5)
Use differentiation rules
dxd(−2x)×y5−2x×dxd(y5)
Evaluate the derivative
−2y5−2x×dxd(y5)
Evaluate the derivative
−2y5−10xy4dxdy
2x−2y5−10xy4dxdy
2x−2y5−10xy4dxdy=dxd(50)
Calculate the derivative
2x−2y5−10xy4dxdy=0
Move the expression to the right-hand side and change its sign
−10xy4dxdy=0−(2x−2y5)
Subtract the terms
More Steps

Evaluate
0−(2x−2y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+2y5
Removing 0 doesn't change the value,so remove it from the expression
−2x+2y5
−10xy4dxdy=−2x+2y5
Divide both sides
−10xy4−10xy4dxdy=−10xy4−2x+2y5
Divide the numbers
dxdy=−10xy4−2x+2y5
Divide the numbers
More Steps

Evaluate
−10xy4−2x+2y5
Rewrite the expression
−10xy42(−x+y5)
Cancel out the common factor 2
−5xy4−x+y5
Use b−a=−ba=−ba to rewrite the fraction
−5xy4−x+y5
Rewrite the expression
5xy4x−y5
dxdy=5xy4x−y5
Take the derivative of both sides
dxd(dxdy)=dxd(5xy4x−y5)
Calculate the derivative
dx2d2y=dxd(5xy4x−y5)
Use differentiation rules
dx2d2y=(5xy4)2dxd(x−y5)×5xy4−(x−y5)×dxd(5xy4)
Calculate the derivative
More Steps

Evaluate
dxd(x−y5)
Use differentiation rules
dxd(x)+dxd(−y5)
Use dxdxn=nxn−1 to find derivative
1+dxd(−y5)
Evaluate the derivative
1−5y4dxdy
dx2d2y=(5xy4)2(1−5y4dxdy)×5xy4−(x−y5)×dxd(5xy4)
Calculate the derivative
More Steps

Evaluate
dxd(5xy4)
Use differentiation rules
dxd(5)×xy4+5×dxd(x)×y4+5x×dxd(y4)
Use dxdxn=nxn−1 to find derivative
dxd(5)×xy4+5y4+5x×dxd(y4)
Evaluate the derivative
dxd(5)×xy4+5y4+20xy3dxdy
Calculate
5y4+20xy3dxdy
dx2d2y=(5xy4)2(1−5y4dxdy)×5xy4−(x−y5)(5y4+20xy3dxdy)
Calculate
More Steps

Evaluate
(1−5y4dxdy)×5xy4
Use the the distributive property to expand the expression
1×5xy4−5y4dxdy×5xy4
Any expression multiplied by 1 remains the same
5xy4−5y4dxdy×5xy4
Multiply the terms
5xy4−25y8dxdy×x
Use the commutative property to reorder the terms
5xy4−25y8xdxdy
dx2d2y=(5xy4)25xy4−25y8xdxdy−(x−y5)(5y4+20xy3dxdy)
Calculate
More Steps

Evaluate
(x−y5)(5y4+20xy3dxdy)
Use the the distributive property to expand the expression
(x−y5)×5y4+(x−y5)×20xy3dxdy
Multiply the terms
5xy4−5y9+(x−y5)×20xy3dxdy
Multiply the terms
5xy4−5y9+20x2y3dxdy−20y8xdxdy
dx2d2y=(5xy4)25xy4−25y8xdxdy−(5xy4−5y9+20x2y3dxdy−20y8xdxdy)
Calculate
More Steps

Calculate
5xy4−25y8xdxdy−(5xy4−5y9+20x2y3dxdy−20y8xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5xy4−25y8xdxdy−5xy4+5y9−20x2y3dxdy+20y8xdxdy
The sum of two opposites equals 0
0−25y8xdxdy+5y9−20x2y3dxdy+20y8xdxdy
Remove 0
−25y8xdxdy+5y9−20x2y3dxdy+20y8xdxdy
Add the terms
−5y8xdxdy+5y9−20x2y3dxdy
dx2d2y=(5xy4)2−5y8xdxdy+5y9−20x2y3dxdy
Calculate
More Steps

Evaluate
(5xy4)2
Evaluate the power
52x2(y4)2
Evaluate the power
25x2(y4)2
Evaluate the power
25x2y8
dx2d2y=25x2y8−5y8xdxdy+5y9−20x2y3dxdy
Calculate
dx2d2y=5x2y5−y5xdxdy+y6−4x2dxdy
Use equation dxdy=5xy4x−y5 to substitute
dx2d2y=5x2y5−y5x×5xy4x−y5+y6−4x2×5xy4x−y5
Solution
More Steps

Calculate
5x2y5−y5x×5xy4x−y5+y6−4x2×5xy4x−y5
Multiply the terms
5x2y5−5y(x−y5)+y6−4x2×5xy4x−y5
Multiply the terms
5x2y5−5y(x−y5)+y6−5y44x(x−y5)
Calculate the sum or difference
More Steps

Evaluate
−5y(x−y5)+y6−5y44x(x−y5)
Reduce fractions to a common denominator
−5y4y(x−y5)y4+5y4y6×5y4−5y44x(x−y5)
Write all numerators above the common denominator
5y4−y(x−y5)y4+y6×5y4−4x(x−y5)
Multiply the terms
5y4−(y5x−y10)+y6×5y4−4x(x−y5)
Multiply the terms
5y4−(y5x−y10)+5y10−4x(x−y5)
Multiply the terms
5y4−(y5x−y10)+5y10−(4x2−4y5x)
Calculate the sum or difference
5y43y5x+6y10−4x2
5x2y55y43y5x+6y10−4x2
Multiply by the reciprocal
5y43y5x+6y10−4x2×5x2y51
Multiply the terms
5y4×5x2y53y5x+6y10−4x2
Multiply the terms
More Steps

Evaluate
5y4×5x2y5
Multiply the numbers
25y4x2y5
Multiply the terms
25y9x2
25y9x23y5x+6y10−4x2
dx2d2y=25y9x23y5x+6y10−4x2
Show Solution
