Question
Solve the equation
x1=2626+2626ix2=−2626−2626i
Alternative Form
x1≈0.196116+0.196116ix2≈−0.196116−0.196116i
Evaluate
x2×169=13i
Use the commutative property to reorder the terms
169x2=13i
Divide both sides
169169x2=16913i
Divide the numbers
x2=16913i
Divide the numbers
More Steps

Evaluate
16913i
Cancel out the common factor 13
13i
Reduce the fraction
131i
x2=131i
Simplify
x=131i
Rewrite the complex number in polar form
More Steps

Evaluate
131i
Determine the modulus and the argument of the complex number
r=02+(131)2θ=arctan(0131)
Calculate
More Steps

Evaluate
02+(131)2
Calculate
0+(131)2
Add the numbers
1691
To take a root of a fraction,take the root of the numerator and denominator separately
1691
Simplify the radical expression
1691
Simplify the radical expression
131
r=131θ=arctan(0131)
Substitute the given values into the formula r(cosθ+isinθ)
131(cos(2π)+isin(2π))
x=131(cos(2π)+isin(2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
x=131×(cos(22π+2kπ)+isin(22π+2kπ))
Simplify
x=1313(cos(22π+2kπ)+isin(22π+2kπ))
Since n=2,substitute k=0,1 into the expression
x1=1313(cos(22π+2×0×π)+isin(22π+2×0×π))x2=1313(cos(22π+2×1×π)+isin(22π+2×1×π))
Calculate
More Steps

Evaluate
22π+2×0×π
Any expression multiplied by 0 equals 0
22π+0
Removing 0 doesn't change the value,so remove it from the expression
22π
Rewrite the expression
2π×21
To multiply the fractions,multiply the numerators and denominators separately
2×2π
Multiply the numbers
4π
x1=1313(cos(4π)+isin(4π))x2=1313(cos(22π+2×1×π)+isin(22π+2×1×π))
Calculate
More Steps

Evaluate
22π+2×1×π
Multiply the terms
22π+2π
Calculate
More Steps

Evaluate
2π+2π
Reduce fractions to a common denominator
2π+22π×2
Write all numerators above the common denominator
2π+2π×2
Multiply the terms
2π+4π
Add the numbers
25π
225π
Rewrite the expression
25π×21
To multiply the fractions,multiply the numerators and denominators separately
2×25π
Multiply the numbers
45π
x1=1313(cos(4π)+isin(4π))x2=1313(cos(45π)+isin(45π))
Solution
x1=2626+2626ix2=−2626−2626i
Alternative Form
x1≈0.196116+0.196116ix2≈−0.196116−0.196116i
Show Solution
