Question
Solve the equation
Solve for x
Solve for y
x=0x=2330
Evaluate
x2×3xy×10=8x6y
Multiply
More Steps

Evaluate
x2×3xy×10
Multiply the terms with the same base by adding their exponents
x2+1×3y×10
Add the numbers
x3×3y×10
Multiply the terms
x3×30y
Use the commutative property to reorder the terms
30x3y
30x3y=8x6y
Rewrite the expression
30yx3=8yx6
Add or subtract both sides
30yx3−8yx6=0
Factor the expression
2yx3(15−4x3)=0
Divide both sides
x3(15−4x3)=0
Separate the equation into 2 possible cases
x3=015−4x3=0
The only way a power can be 0 is when the base equals 0
x=015−4x3=0
Solution
More Steps

Evaluate
15−4x3=0
Move the constant to the right-hand side and change its sign
−4x3=0−15
Removing 0 doesn't change the value,so remove it from the expression
−4x3=−15
Change the signs on both sides of the equation
4x3=15
Divide both sides
44x3=415
Divide the numbers
x3=415
Take the 3-th root on both sides of the equation
3x3=3415
Calculate
x=3415
Simplify the root
More Steps

Evaluate
3415
To take a root of a fraction,take the root of the numerator and denominator separately
34315
Multiply by the Conjugate
34×342315×342
Simplify
34×342315×232
Multiply the numbers
34×3422330
Multiply the numbers
222330
Reduce the fraction
2330
x=2330
x=0x=2330
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2×3xy×10=8x6y
Multiply
More Steps

Evaluate
x2×3xy×10
Multiply the terms with the same base by adding their exponents
x2+1×3y×10
Add the numbers
x3×3y×10
Multiply the terms
x3×30y
Use the commutative property to reorder the terms
30x3y
30x3y=8x6y
To test if the graph of 30x3y=8x6y is symmetry with respect to the origin,substitute -x for x and -y for y
30(−x)3(−y)=8(−x)6(−y)
Evaluate
More Steps

Evaluate
30(−x)3(−y)
Any expression multiplied by 1 remains the same
−30(−x)3y
Multiply the terms
More Steps

Evaluate
30(−x)3
Rewrite the expression
30(−x3)
Multiply the numbers
−30x3
−(−30x3y)
Multiply the first two terms
30x3y
30x3y=8(−x)6(−y)
Evaluate
More Steps

Evaluate
8(−x)6(−y)
Any expression multiplied by 1 remains the same
−8(−x)6y
Multiply the terms
−8x6y
30x3y=−8x6y
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=34×cos(θ)315
Evaluate
x2×3xy×10=8x6y
Evaluate
More Steps

Evaluate
x2×3xy×10
Multiply the terms with the same base by adding their exponents
x2+1×3y×10
Add the numbers
x3×3y×10
Multiply the terms
x3×30y
Use the commutative property to reorder the terms
30x3y
30x3y=8x6y
Move the expression to the left side
30x3y−8x6y=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
30(cos(θ)×r)3sin(θ)×r−8(cos(θ)×r)6sin(θ)×r=0
Factor the expression
−8cos6(θ)sin(θ)×r7+30cos3(θ)sin(θ)×r4=0
Factor the expression
r4(−8cos6(θ)sin(θ)×r3+30cos3(θ)sin(θ))=0
When the product of factors equals 0,at least one factor is 0
r4=0−8cos6(θ)sin(θ)×r3+30cos3(θ)sin(θ)=0
Evaluate
r=0−8cos6(θ)sin(θ)×r3+30cos3(θ)sin(θ)=0
Solution
More Steps

Factor the expression
−8cos6(θ)sin(θ)×r3+30cos3(θ)sin(θ)=0
Subtract the terms
−8cos6(θ)sin(θ)×r3+30cos3(θ)sin(θ)−30cos3(θ)sin(θ)=0−30cos3(θ)sin(θ)
Evaluate
−8cos6(θ)sin(θ)×r3=−30cos3(θ)sin(θ)
Divide the terms
r3=4cos3(θ)15
Simplify the expression
More Steps

Evaluate
34cos3(θ)15
To take a root of a fraction,take the root of the numerator and denominator separately
34cos3(θ)315
Simplify the radical expression
34×cos(θ)315
r=34×cos(θ)315
r=0r=34×cos(θ)315
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=15x−4x424x3y−45y
Calculate
x23xy10=8x6y
Simplify the expression
30x3y=8x6y
Take the derivative of both sides
dxd(30x3y)=dxd(8x6y)
Calculate the derivative
More Steps

Evaluate
dxd(30x3y)
Use differentiation rules
dxd(30x3)×y+30x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(30x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
30×dxd(x3)
Use dxdxn=nxn−1 to find derivative
30×3x2
Multiply the terms
90x2
90x2y+30x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
90x2y+30x3dxdy
90x2y+30x3dxdy=dxd(8x6y)
Calculate the derivative
More Steps

Evaluate
dxd(8x6y)
Use differentiation rules
dxd(8x6)×y+8x6×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(8x6)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
8×dxd(x6)
Use dxdxn=nxn−1 to find derivative
8×6x5
Multiply the terms
48x5
48x5y+8x6×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
48x5y+8x6dxdy
90x2y+30x3dxdy=48x5y+8x6dxdy
Move the expression to the left side
90x2y+30x3dxdy−8x6dxdy=48x5y
Move the expression to the right side
30x3dxdy−8x6dxdy=48x5y−90x2y
Collect like terms by calculating the sum or difference of their coefficients
(30x3−8x6)dxdy=48x5y−90x2y
Divide both sides
30x3−8x6(30x3−8x6)dxdy=30x3−8x648x5y−90x2y
Divide the numbers
dxdy=30x3−8x648x5y−90x2y
Solution
More Steps

Evaluate
30x3−8x648x5y−90x2y
Rewrite the expression
30x3−8x62x2(24x3y−45y)
Rewrite the expression
2x2(15x−4x4)2x2(24x3y−45y)
Reduce the fraction
15x−4x424x3y−45y
dxdy=15x−4x424x3y−45y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=225x2−120x5+16x8−2160x3y+672x6y+2700y
Calculate
x23xy10=8x6y
Simplify the expression
30x3y=8x6y
Take the derivative of both sides
dxd(30x3y)=dxd(8x6y)
Calculate the derivative
More Steps

Evaluate
dxd(30x3y)
Use differentiation rules
dxd(30x3)×y+30x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(30x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
30×dxd(x3)
Use dxdxn=nxn−1 to find derivative
30×3x2
Multiply the terms
90x2
90x2y+30x3×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
90x2y+30x3dxdy
90x2y+30x3dxdy=dxd(8x6y)
Calculate the derivative
More Steps

Evaluate
dxd(8x6y)
Use differentiation rules
dxd(8x6)×y+8x6×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(8x6)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
8×dxd(x6)
Use dxdxn=nxn−1 to find derivative
8×6x5
Multiply the terms
48x5
48x5y+8x6×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
48x5y+8x6dxdy
90x2y+30x3dxdy=48x5y+8x6dxdy
Move the expression to the left side
90x2y+30x3dxdy−8x6dxdy=48x5y
Move the expression to the right side
30x3dxdy−8x6dxdy=48x5y−90x2y
Collect like terms by calculating the sum or difference of their coefficients
(30x3−8x6)dxdy=48x5y−90x2y
Divide both sides
30x3−8x6(30x3−8x6)dxdy=30x3−8x648x5y−90x2y
Divide the numbers
dxdy=30x3−8x648x5y−90x2y
Divide the numbers
More Steps

Evaluate
30x3−8x648x5y−90x2y
Rewrite the expression
30x3−8x62x2(24x3y−45y)
Rewrite the expression
2x2(15x−4x4)2x2(24x3y−45y)
Reduce the fraction
15x−4x424x3y−45y
dxdy=15x−4x424x3y−45y
Take the derivative of both sides
dxd(dxdy)=dxd(15x−4x424x3y−45y)
Calculate the derivative
dx2d2y=dxd(15x−4x424x3y−45y)
Use differentiation rules
dx2d2y=(15x−4x4)2dxd(24x3y−45y)×(15x−4x4)−(24x3y−45y)×dxd(15x−4x4)
Calculate the derivative
More Steps

Evaluate
dxd(24x3y−45y)
Use differentiation rules
dxd(24x3y)+dxd(−45y)
Evaluate the derivative
72x2y+24x3dxdy+dxd(−45y)
Evaluate the derivative
72x2y+24x3dxdy−45dxdy
dx2d2y=(15x−4x4)2(72x2y+24x3dxdy−45dxdy)(15x−4x4)−(24x3y−45y)×dxd(15x−4x4)
Calculate the derivative
More Steps

Evaluate
dxd(15x−4x4)
Use differentiation rules
dxd(15x)+dxd(−4x4)
Evaluate the derivative
15+dxd(−4x4)
Evaluate the derivative
15−16x3
dx2d2y=(15x−4x4)2(72x2y+24x3dxdy−45dxdy)(15x−4x4)−(24x3y−45y)(15−16x3)
Calculate
More Steps

Evaluate
(72x2y+24x3dxdy−45dxdy)(15x−4x4)
Use the the distributive property to expand the expression
(72x2y+24x3dxdy)(15x−4x4)−45dxdy×(15x−4x4)
Multiply the terms
1080x3y−288x6y+360x4dxdy−96x7dxdy−45dxdy×(15x−4x4)
Multiply the terms
1080x3y−288x6y+360x4dxdy−96x7dxdy−675xdxdy+180x4dxdy
Calculate
1080x3y−288x6y+540x4dxdy−96x7dxdy−675xdxdy
dx2d2y=(15x−4x4)21080x3y−288x6y+540x4dxdy−96x7dxdy−675xdxdy−(24x3y−45y)(15−16x3)
Calculate
More Steps

Evaluate
(24x3y−45y)(15−16x3)
Use the the distributive property to expand the expression
(24x3y−45y)×15+(24x3y−45y)(−16x3)
Multiply the terms
360x3y−675y+(24x3y−45y)(−16x3)
Multiply the terms
360x3y−675y−384x6y+720yx3
Calculate
1080x3y−675y−384x6y
dx2d2y=(15x−4x4)21080x3y−288x6y+540x4dxdy−96x7dxdy−675xdxdy−(1080x3y−675y−384x6y)
Calculate
More Steps

Calculate
1080x3y−288x6y+540x4dxdy−96x7dxdy−675xdxdy−(1080x3y−675y−384x6y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1080x3y−288x6y+540x4dxdy−96x7dxdy−675xdxdy−1080x3y+675y+384x6y
The sum of two opposites equals 0
0−288x6y+540x4dxdy−96x7dxdy−675xdxdy+675y+384x6y
Remove 0
−288x6y+540x4dxdy−96x7dxdy−675xdxdy+675y+384x6y
Add the terms
96x6y+540x4dxdy−96x7dxdy−675xdxdy+675y
dx2d2y=(15x−4x4)296x6y+540x4dxdy−96x7dxdy−675xdxdy+675y
Use equation dxdy=15x−4x424x3y−45y to substitute
dx2d2y=(15x−4x4)296x6y+540x4×15x−4x424x3y−45y−96x7×15x−4x424x3y−45y−675x×15x−4x424x3y−45y+675y
Solution
More Steps

Calculate
(15x−4x4)296x6y+540x4×15x−4x424x3y−45y−96x7×15x−4x424x3y−45y−675x×15x−4x424x3y−45y+675y
Multiply the terms
More Steps

Multiply the terms
540x4×15x−4x424x3y−45y
Rewrite the expression
540x4×x(15−4x3)24x3y−45y
Cancel out the common factor x
540x3×15−4x324x3y−45y
Multiply the terms
15−4x3540x3(24x3y−45y)
(15x−4x4)296x6y+15−4x3540x3(24x3y−45y)−96x7×15x−4x424x3y−45y−675x×15x−4x424x3y−45y+675y
Multiply the terms
(15x−4x4)296x6y+15−4x3540x3(24x3y−45y)−15−4x396x6(24x3y−45y)−675x×15x−4x424x3y−45y+675y
Multiply the terms
(15x−4x4)296x6y+15−4x3540x3(24x3y−45y)−15−4x396x6(24x3y−45y)−15−4x3675(24x3y−45y)+675y
Calculate the sum or difference
More Steps

Evaluate
96x6y+15−4x3540x3(24x3y−45y)−15−4x396x6(24x3y−45y)−15−4x3675(24x3y−45y)+675y
Reduce fractions to a common denominator
15−4x396x6y(15−4x3)+15−4x3540x3(24x3y−45y)−15−4x396x6(24x3y−45y)−15−4x3675(24x3y−45y)+15−4x3675y(15−4x3)
Write all numerators above the common denominator
15−4x396x6y(15−4x3)+540x3(24x3y−45y)−96x6(24x3y−45y)−675(24x3y−45y)+675y(15−4x3)
Multiply the terms
15−4x31440x6y−384x9y+540x3(24x3y−45y)−96x6(24x3y−45y)−675(24x3y−45y)+675y(15−4x3)
Multiply the terms
15−4x31440x6y−384x9y+12960x6y−24300yx3−96x6(24x3y−45y)−675(24x3y−45y)+675y(15−4x3)
Multiply the terms
15−4x31440x6y−384x9y+12960x6y−24300yx3−(2304x9y−4320yx6)−675(24x3y−45y)+675y(15−4x3)
Multiply the terms
15−4x31440x6y−384x9y+12960x6y−24300yx3−(2304x9y−4320yx6)−(16200x3y−30375y)+675y(15−4x3)
Multiply the terms
15−4x31440x6y−384x9y+12960x6y−24300yx3−(2304x9y−4320yx6)−(16200x3y−30375y)+10125y−2700x3y
Calculate the sum or difference
15−4x318720x6y−2688x9y−43200yx3+40500y
Factor the expression
15−4x3(−4x3+15)(−2160x3y+672x6y+2700y)
Rewrite the expression
−4x3+15(−4x3+15)(−2160x3y+672x6y+2700y)
Reduce the fraction
−2160x3y+672x6y+2700y
(15x−4x4)2−2160x3y+672x6y+2700y
Expand the expression
More Steps

Evaluate
(15x−4x4)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(15x)2−2×15x×4x4+(4x4)2
Calculate
225x2−120x5+16x8
225x2−120x5+16x8−2160x3y+672x6y+2700y
dx2d2y=225x2−120x5+16x8−2160x3y+672x6y+2700y
Show Solution
