Question
Solve the equation
x1=−516+294,x2=5−16+294
Alternative Form
x1≈−7.078144,x2≈0.678144
Evaluate
x2×125=2−(8×3x)
Use the commutative property to reorder the terms
125x2=2−(8×3x)
Multiply the terms
125x2=2−38x
Multiply both sides of the equation by LCD
125x2×12=(2−38x)×12
Simplify the equation
5x2=(2−38x)×12
Simplify the equation
More Steps

Evaluate
(2−38x)×12
Apply the distributive property
2×12−38x×12
Simplify
2×12−8x×4
Multiply the numbers
24−8x×4
Multiply the numbers
24−32x
5x2=24−32x
Move the expression to the left side
5x2−(24−32x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5x2−24+32x=0
Rewrite in standard form
5x2+32x−24=0
Substitute a=5,b=32 and c=−24 into the quadratic formula x=2a−b±b2−4ac
x=2×5−32±322−4×5(−24)
Simplify the expression
x=10−32±322−4×5(−24)
Simplify the expression
More Steps

Evaluate
322−4×5(−24)
Multiply
More Steps

Multiply the terms
4×5(−24)
Rewrite the expression
−4×5×24
Multiply the terms
−480
322−(−480)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
322+480
Evaluate the power
1024+480
Add the numbers
1504
x=10−32±1504
Simplify the radical expression
More Steps

Evaluate
1504
Write the expression as a product where the root of one of the factors can be evaluated
16×94
Write the number in exponential form with the base of 4
42×94
The root of a product is equal to the product of the roots of each factor
42×94
Reduce the index of the radical and exponent with 2
494
x=10−32±494
Separate the equation into 2 possible cases
x=10−32+494x=10−32−494
Simplify the expression
More Steps

Evaluate
x=10−32+494
Divide the terms
More Steps

Evaluate
10−32+494
Rewrite the expression
102(−16+294)
Cancel out the common factor 2
5−16+294
x=5−16+294
x=5−16+294x=10−32−494
Simplify the expression
More Steps

Evaluate
x=10−32−494
Divide the terms
More Steps

Evaluate
10−32−494
Rewrite the expression
102(−16−294)
Cancel out the common factor 2
5−16−294
Use b−a=−ba=−ba to rewrite the fraction
−516+294
x=−516+294
x=5−16+294x=−516+294
Solution
x1=−516+294,x2=5−16+294
Alternative Form
x1≈−7.078144,x2≈0.678144
Show Solution
