Question
Solve the equation
Solve for x
Solve for y
x=y27+49+912y3x=y27−49+912y3
Evaluate
x2y2−14x−12y×76=0
Multiply the terms
x2y2−14x−912y=0
Rewrite the expression
y2x2−14x−912y=0
Substitute a=y2,b=−14 and c=−912y into the quadratic formula x=2a−b±b2−4ac
x=2y214±(−14)2−4y2(−912y)
Simplify the expression
More Steps

Evaluate
(−14)2−4y2(−912y)
Multiply
More Steps

Multiply the terms
4y2(−912y)
Rewrite the expression
−4y2×912y
Multiply the terms
−3648y2×y
Multiply the terms with the same base by adding their exponents
−3648y2+1
Add the numbers
−3648y3
(−14)2−(−3648y3)
Rewrite the expression
142−(−3648y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
142+3648y3
Evaluate the power
196+3648y3
x=2y214±196+3648y3
Simplify the radical expression
More Steps

Evaluate
196+3648y3
Factor the expression
4(49+912y3)
The root of a product is equal to the product of the roots of each factor
4×49+912y3
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
249+912y3
x=2y214±249+912y3
Separate the equation into 2 possible cases
x=2y214+249+912y3x=2y214−249+912y3
Simplify the expression
More Steps

Evaluate
x=2y214+249+912y3
Divide the terms
More Steps

Evaluate
2y214+249+912y3
Rewrite the expression
2y22(7+49+912y3)
Reduce the fraction
y27+49+912y3
x=y27+49+912y3
x=y27+49+912y3x=2y214−249+912y3
Solution
More Steps

Evaluate
x=2y214−249+912y3
Divide the terms
More Steps

Evaluate
2y214−249+912y3
Rewrite the expression
2y22(7−49+912y3)
Reduce the fraction
y27−49+912y3
x=y27−49+912y3
x=y27+49+912y3x=y27−49+912y3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2y2−14x−12y×76=0
Multiply the terms
x2y2−14x−912y=0
To test if the graph of x2y2−14x−912y=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2(−y)2−14(−x)−912(−y)=0
Evaluate
More Steps

Evaluate
(−x)2(−y)2−14(−x)−912(−y)
Multiply the terms
x2y2−14(−x)−912(−y)
Multiply the numbers
x2y2+14x−912(−y)
Multiply the numbers
x2y2+14x+912y
x2y2+14x+912y=0
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=3sin2(2θ)237cos(θ)+456sin(θ)
Evaluate
x2y2−14x−12y×76=0
Evaluate
x2y2−14x−912y=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(cos(θ)×r)2(sin(θ)×r)2−14cos(θ)×r−912sin(θ)×r=0
Factor the expression
(cos(θ)sin(θ))2r4+(−14cos(θ)−912sin(θ))r=0
Simplify the expression
41sin2(2θ)×r4+(−14cos(θ)−912sin(θ))r=0
Factor the expression
r(41sin2(2θ)×r3−14cos(θ)−912sin(θ))=0
When the product of factors equals 0,at least one factor is 0
r=041sin2(2θ)×r3−14cos(θ)−912sin(θ)=0
Solution
More Steps

Factor the expression
41sin2(2θ)×r3−14cos(θ)−912sin(θ)=0
Subtract the terms
41sin2(2θ)×r3−14cos(θ)−912sin(θ)−(−14cos(θ)−912sin(θ))=0−(−14cos(θ)−912sin(θ))
Evaluate
41sin2(2θ)×r3=14cos(θ)+912sin(θ)
Divide the terms
r3=sin2(2θ)56cos(θ)+3648sin(θ)
Simplify the expression
More Steps

Evaluate
3sin2(2θ)56cos(θ)+3648sin(θ)
To take a root of a fraction,take the root of the numerator and denominator separately
3sin2(2θ)356cos(θ)+3648sin(θ)
Simplify the radical expression
3sin2(2θ)237cos(θ)+456sin(θ)
r=3sin2(2θ)237cos(θ)+456sin(θ)
r=0r=3sin2(2θ)237cos(θ)+456sin(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=x2y−456−xy2+7
Calculate
x2y2−14x−12y76=0
Simplify the expression
x2y2−14x−912y=0
Take the derivative of both sides
dxd(x2y2−14x−912y)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2y2−14x−912y)
Use differentiation rules
dxd(x2y2)+dxd(−14x)+dxd(−912y)
Evaluate the derivative
More Steps

Evaluate
dxd(x2y2)
Use differentiation rules
dxd(x2)×y2+x2×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2xy2+x2×dxd(y2)
Evaluate the derivative
2xy2+2x2ydxdy
2xy2+2x2ydxdy+dxd(−14x)+dxd(−912y)
Evaluate the derivative
More Steps

Evaluate
dxd(−14x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−14×dxd(x)
Use dxdxn=nxn−1 to find derivative
−14×1
Any expression multiplied by 1 remains the same
−14
2xy2+2x2ydxdy−14+dxd(−912y)
Evaluate the derivative
More Steps

Evaluate
dxd(−912y)
Use differentiation rules
dyd(−912y)×dxdy
Evaluate the derivative
−912dxdy
2xy2+2x2ydxdy−14−912dxdy
2xy2+2x2ydxdy−14−912dxdy=dxd(0)
Calculate the derivative
2xy2+2x2ydxdy−14−912dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
2xy2−14+(2x2y−912)dxdy=0
Move the constant to the right side
(2x2y−912)dxdy=0−(2xy2−14)
Subtract the terms
More Steps

Evaluate
0−(2xy2−14)
Removing 0 doesn't change the value,so remove it from the expression
−(2xy2−14)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2xy2+14
(2x2y−912)dxdy=−2xy2+14
Divide both sides
2x2y−912(2x2y−912)dxdy=2x2y−912−2xy2+14
Divide the numbers
dxdy=2x2y−912−2xy2+14
Solution
More Steps

Evaluate
2x2y−912−2xy2+14
Rewrite the expression
2x2y−9122(−xy2+7)
Rewrite the expression
2(x2y−456)2(−xy2+7)
Reduce the fraction
x2y−456−xy2+7
dxdy=x2y−456−xy2+7
Show Solution
