Question
x2y2(1−x)3
Simplify the expression
x2y2−3x3y2+3x4y2−x5y2
Evaluate
x2y2(1−x)3
Expand the expression
More Steps

Evaluate
(1−x)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
13−3×12×x+3×1×x2−x3
Calculate
1−3x+3x2−x3
x2y2(1−3x+3x2−x3)
Apply the distributive property
x2y2×1−x2y2×3x+x2y2×3x2−x2y2x3
Any expression multiplied by 1 remains the same
x2y2−x2y2×3x+x2y2×3x2−x2y2x3
Multiply the terms
More Steps

Evaluate
x2y2×3x
Use the commutative property to reorder the terms
3x2y2x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
3x3y2
x2y2−3x3y2+x2y2×3x2−x2y2x3
Multiply the terms
More Steps

Evaluate
x2y2×3x2
Use the commutative property to reorder the terms
3x2y2x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
3x4y2
x2y2−3x3y2+3x4y2−x2y2x3
Solution
More Steps

Evaluate
x2×x3
Use the product rule an×am=an+m to simplify the expression
x2+3
Add the numbers
x5
x2y2−3x3y2+3x4y2−x5y2
Show Solution
