Question
Solve the equation
Solve for x
Solve for y
x=3y318y2+54y
Evaluate
x2y2×6x−4y−12=0
Multiply
More Steps

Evaluate
x2y2×6x
Multiply the terms with the same base by adding their exponents
x2+1y2×6
Add the numbers
x3y2×6
Use the commutative property to reorder the terms
6x3y2
6x3y2−4y−12=0
Rewrite the expression
6y2x3−4y−12=0
Move the expression to the right-hand side and change its sign
6y2x3=0+4y+12
Removing 0 doesn't change the value,so remove it from the expression
6y2x3=4y+12
Divide both sides
6y26y2x3=6y24y+12
Divide the numbers
x3=6y24y+12
Divide the numbers
More Steps

Evaluate
6y24y+12
Rewrite the expression
6y22(2y+6)
Cancel out the common factor 2
3y22y+6
x3=3y22y+6
Take the 3-th root on both sides of the equation
3x3=33y22y+6
Calculate
x=33y22y+6
Solution
More Steps

Evaluate
33y22y+6
To take a root of a fraction,take the root of the numerator and denominator separately
33y232y+6
Multiply by the Conjugate
33y2×332y32y+6×332y
Calculate
3y32y+6×332y
Calculate
More Steps

Evaluate
32y+6×332y
The product of roots with the same index is equal to the root of the product
3(2y+6)×32y
Calculate the product
318y2+54y
3y318y2+54y
x=3y318y2+54y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2y2×6x−4y−12=0
Multiply
More Steps

Evaluate
x2y2×6x
Multiply the terms with the same base by adding their exponents
x2+1y2×6
Add the numbers
x3y2×6
Use the commutative property to reorder the terms
6x3y2
6x3y2−4y−12=0
To test if the graph of 6x3y2−4y−12=0 is symmetry with respect to the origin,substitute -x for x and -y for y
6(−x)3(−y)2−4(−y)−12=0
Evaluate
More Steps

Evaluate
6(−x)3(−y)2−4(−y)−12
Multiply the terms
More Steps

Multiply the terms
6(−x)3(−y)2
Multiply the terms
−6x3(−y)2
Multiply the terms
−6x3y2
−6x3y2−4(−y)−12
Multiply the numbers
−6x3y2+4y−12
−6x3y2+4y−12=0
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−6x3y−29x2y2
Calculate
x2y26x−4y−12=0
Simplify the expression
6x3y2−4y−12=0
Take the derivative of both sides
dxd(6x3y2−4y−12)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(6x3y2−4y−12)
Use differentiation rules
dxd(6x3y2)+dxd(−4y)+dxd(−12)
Evaluate the derivative
More Steps

Evaluate
dxd(6x3y2)
Use differentiation rules
dxd(6x3)×y2+6x3×dxd(y2)
Evaluate the derivative
18x2y2+6x3×dxd(y2)
Evaluate the derivative
18x2y2+12x3ydxdy
18x2y2+12x3ydxdy+dxd(−4y)+dxd(−12)
Evaluate the derivative
More Steps

Evaluate
dxd(−4y)
Use differentiation rules
dyd(−4y)×dxdy
Evaluate the derivative
−4dxdy
18x2y2+12x3ydxdy−4dxdy+dxd(−12)
Use dxd(c)=0 to find derivative
18x2y2+12x3ydxdy−4dxdy+0
Evaluate
18x2y2+12x3ydxdy−4dxdy
18x2y2+12x3ydxdy−4dxdy=dxd(0)
Calculate the derivative
18x2y2+12x3ydxdy−4dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
18x2y2+(12x3y−4)dxdy=0
Move the constant to the right side
(12x3y−4)dxdy=0−18x2y2
Removing 0 doesn't change the value,so remove it from the expression
(12x3y−4)dxdy=−18x2y2
Divide both sides
12x3y−4(12x3y−4)dxdy=12x3y−4−18x2y2
Divide the numbers
dxdy=12x3y−4−18x2y2
Solution
More Steps

Evaluate
12x3y−4−18x2y2
Rewrite the expression
2(6x3y−2)−18x2y2
Cancel out the common factor 2
6x3y−2−9x2y2
Use b−a=−ba=−ba to rewrite the fraction
−6x3y−29x2y2
dxdy=−6x3y−29x2y2
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=108x9y3−108x6y2+36x3y−4405x7y4−108x4y3−36xy2
Calculate
x2y26x−4y−12=0
Simplify the expression
6x3y2−4y−12=0
Take the derivative of both sides
dxd(6x3y2−4y−12)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(6x3y2−4y−12)
Use differentiation rules
dxd(6x3y2)+dxd(−4y)+dxd(−12)
Evaluate the derivative
More Steps

Evaluate
dxd(6x3y2)
Use differentiation rules
dxd(6x3)×y2+6x3×dxd(y2)
Evaluate the derivative
18x2y2+6x3×dxd(y2)
Evaluate the derivative
18x2y2+12x3ydxdy
18x2y2+12x3ydxdy+dxd(−4y)+dxd(−12)
Evaluate the derivative
More Steps

Evaluate
dxd(−4y)
Use differentiation rules
dyd(−4y)×dxdy
Evaluate the derivative
−4dxdy
18x2y2+12x3ydxdy−4dxdy+dxd(−12)
Use dxd(c)=0 to find derivative
18x2y2+12x3ydxdy−4dxdy+0
Evaluate
18x2y2+12x3ydxdy−4dxdy
18x2y2+12x3ydxdy−4dxdy=dxd(0)
Calculate the derivative
18x2y2+12x3ydxdy−4dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
18x2y2+(12x3y−4)dxdy=0
Move the constant to the right side
(12x3y−4)dxdy=0−18x2y2
Removing 0 doesn't change the value,so remove it from the expression
(12x3y−4)dxdy=−18x2y2
Divide both sides
12x3y−4(12x3y−4)dxdy=12x3y−4−18x2y2
Divide the numbers
dxdy=12x3y−4−18x2y2
Divide the numbers
More Steps

Evaluate
12x3y−4−18x2y2
Rewrite the expression
2(6x3y−2)−18x2y2
Cancel out the common factor 2
6x3y−2−9x2y2
Use b−a=−ba=−ba to rewrite the fraction
−6x3y−29x2y2
dxdy=−6x3y−29x2y2
Take the derivative of both sides
dxd(dxdy)=dxd(−6x3y−29x2y2)
Calculate the derivative
dx2d2y=dxd(−6x3y−29x2y2)
Use differentiation rules
dx2d2y=−(6x3y−2)2dxd(9x2y2)×(6x3y−2)−9x2y2×dxd(6x3y−2)
Calculate the derivative
More Steps

Evaluate
dxd(9x2y2)
Use differentiation rules
dxd(9)×x2y2+9×dxd(x2)×y2+9x2×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(9)×x2y2+18xy2+9x2×dxd(y2)
Evaluate the derivative
dxd(9)×x2y2+18xy2+18x2ydxdy
Calculate
18xy2+18x2ydxdy
dx2d2y=−(6x3y−2)2(18xy2+18x2ydxdy)(6x3y−2)−9x2y2×dxd(6x3y−2)
Calculate the derivative
More Steps

Evaluate
dxd(6x3y−2)
Use differentiation rules
dxd(6x3y)+dxd(−2)
Evaluate the derivative
18x2y+6x3dxdy+dxd(−2)
Use dxd(c)=0 to find derivative
18x2y+6x3dxdy+0
Evaluate
18x2y+6x3dxdy
dx2d2y=−(6x3y−2)2(18xy2+18x2ydxdy)(6x3y−2)−9x2y2(18x2y+6x3dxdy)
Calculate
More Steps

Evaluate
(18xy2+18x2ydxdy)(6x3y−2)
Use the the distributive property to expand the expression
18xy2(6x3y−2)+18x2ydxdy×(6x3y−2)
Multiply the terms
108x4y3−36xy2+18x2ydxdy×(6x3y−2)
Multiply the terms
108x4y3−36xy2+108x5y2dxdy−36x2ydxdy
dx2d2y=−(6x3y−2)2108x4y3−36xy2+108x5y2dxdy−36x2ydxdy−9x2y2(18x2y+6x3dxdy)
Calculate
More Steps

Evaluate
9x2y2(18x2y+6x3dxdy)
Apply the distributive property
9x2y2×18x2y+9x2y2×6x3dxdy
Calculate
162x4y3+9x2y2×6x3dxdy
Calculate
162x4y3+54x5y2dxdy
dx2d2y=−(6x3y−2)2108x4y3−36xy2+108x5y2dxdy−36x2ydxdy−(162x4y3+54x5y2dxdy)
Calculate
More Steps

Calculate
108x4y3−36xy2+108x5y2dxdy−36x2ydxdy−(162x4y3+54x5y2dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
108x4y3−36xy2+108x5y2dxdy−36x2ydxdy−162x4y3−54x5y2dxdy
Subtract the terms
−54x4y3−36xy2+108x5y2dxdy−36x2ydxdy−54x5y2dxdy
Subtract the terms
−54x4y3−36xy2+54x5y2dxdy−36x2ydxdy
dx2d2y=−(6x3y−2)2−54x4y3−36xy2+54x5y2dxdy−36x2ydxdy
Calculate
dx2d2y=−2(3x3y−1)2−27x4y3−18xy2+27x5y2dxdy−18x2ydxdy
Use equation dxdy=−6x3y−29x2y2 to substitute
dx2d2y=−2(3x3y−1)2−27x4y3−18xy2+27x5y2(−6x3y−29x2y2)−18x2y(−6x3y−29x2y2)
Solution
More Steps

Calculate
−2(3x3y−1)2−27x4y3−18xy2+27x5y2(−6x3y−29x2y2)−18x2y(−6x3y−29x2y2)
Multiply
More Steps

Multiply the terms
27x5y2(−6x3y−29x2y2)
Any expression multiplied by 1 remains the same
−27x5y2×6x3y−29x2y2
Multiply the terms
−6x3y−2243x7y4
−2(3x3y−1)2−27x4y3−18xy2−6x3y−2243x7y4−18x2y(−6x3y−29x2y2)
Multiply
More Steps

Multiply the terms
−18x2y(−6x3y−29x2y2)
Any expression multiplied by 1 remains the same
18x2y×6x3y−29x2y2
Rewrite the expression
18x2y×2(3x3y−1)9x2y2
Cancel out the common factor 2
9x2y×3x3y−19x2y2
Multiply the terms
3x3y−19x2y×9x2y2
Multiply the terms
3x3y−181x4y3
−2(3x3y−1)2−27x4y3−18xy2−6x3y−2243x7y4+3x3y−181x4y3
Calculate the sum or difference
More Steps

Evaluate
−27x4y3−18xy2−6x3y−2243x7y4+3x3y−181x4y3
Reduce fractions to a common denominator
−6x3y−227x4y3(6x3y−2)−6x3y−218xy2(6x3y−2)−6x3y−2243x7y4+(3x3y−1)×281x4y3×2
Use the commutative property to reorder the terms
−6x3y−227x4y3(6x3y−2)−6x3y−218xy2(6x3y−2)−6x3y−2243x7y4+2(3x3y−1)81x4y3×2
Rewrite the expression
−6x3y−227x4y3(6x3y−2)−6x3y−218xy2(6x3y−2)−6x3y−2243x7y4+6x3y−281x4y3×2
Write all numerators above the common denominator
6x3y−2−27x4y3(6x3y−2)−18xy2(6x3y−2)−243x7y4+81x4y3×2
Multiply the terms
6x3y−2−(162x7y4−54x4y3)−18xy2(6x3y−2)−243x7y4+81x4y3×2
Multiply the terms
6x3y−2−(162x7y4−54x4y3)−(108x4y3−36xy2)−243x7y4+81x4y3×2
Multiply the terms
6x3y−2−(162x7y4−54x4y3)−(108x4y3−36xy2)−243x7y4+162x4y3
Calculate the sum or difference
6x3y−2−405x7y4+108x4y3+36xy2
−2(3x3y−1)26x3y−2−405x7y4+108x4y3+36xy2
Divide the terms
More Steps

Evaluate
2(3x3y−1)26x3y−2−405x7y4+108x4y3+36xy2
Multiply by the reciprocal
6x3y−2−405x7y4+108x4y3+36xy2×2(3x3y−1)21
Multiply the terms
(6x3y−2)×2(3x3y−1)2−405x7y4+108x4y3+36xy2
Use the commutative property to reorder the terms
2(6x3y−2)(3x3y−1)2−405x7y4+108x4y3+36xy2
−2(6x3y−2)(3x3y−1)2−405x7y4+108x4y3+36xy2
Use b−a=−ba=−ba to rewrite the fraction
2(6x3y−2)(3x3y−1)2405x7y4−108x4y3−36xy2
Expand the expression
More Steps

Evaluate
2(6x3y−2)(3x3y−1)2
Expand the expression
2(6x3y−2)(9x6y2−6x3y+1)
Multiply the terms
(12x3y−4)(9x6y2−6x3y+1)
Apply the distributive property
12x3y×9x6y2−12x3y×6x3y+12x3y×1−4×9x6y2−(−4×6x3y)−4×1
Multiply the terms
108x9y3−12x3y×6x3y+12x3y×1−4×9x6y2−(−4×6x3y)−4×1
Multiply the terms
108x9y3−72x6y2+12x3y×1−4×9x6y2−(−4×6x3y)−4×1
Any expression multiplied by 1 remains the same
108x9y3−72x6y2+12x3y−4×9x6y2−(−4×6x3y)−4×1
Multiply the numbers
108x9y3−72x6y2+12x3y−36x6y2−(−4×6x3y)−4×1
Multiply the numbers
108x9y3−72x6y2+12x3y−36x6y2−(−24x3y)−4×1
Any expression multiplied by 1 remains the same
108x9y3−72x6y2+12x3y−36x6y2−(−24x3y)−4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
108x9y3−72x6y2+12x3y−36x6y2+24x3y−4
Subtract the terms
108x9y3−108x6y2+12x3y+24x3y−4
Add the terms
108x9y3−108x6y2+36x3y−4
108x9y3−108x6y2+36x3y−4405x7y4−108x4y3−36xy2
dx2d2y=108x9y3−108x6y2+36x3y−4405x7y4−108x4y3−36xy2
Show Solution
