Question
Solve the equation
y=4x2x−x22x
Evaluate
x2+(y2x)×2=1
Remove the parentheses
x2+y2x×2=1
Use the commutative property to reorder the terms
x2+2y2x=1
Rewrite the expression
x2+22x×y=1
Move the expression to the right-hand side and change its sign
22x×y=1−x2
Divide both sides
22x22x×y=22x1−x2
Divide the numbers
y=22x1−x2
Solution
More Steps

Evaluate
22x1−x2
Multiply by the Conjugate
22x×2x(1−x2)2x
Calculate
2×2x(1−x2)2x
Calculate
More Steps

Evaluate
(1−x2)2x
Multiply each term in the parentheses by 2x
1×2x−x22x
Calculate the product
2x−x22x
2×2x2x−x22x
Calculate
4x2x−x22x
y=4x2x−x22x
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2+(y2x)×2=1
Remove the parentheses
x2+y2x×2=1
Use the commutative property to reorder the terms
x2+2y2x=1
To test if the graph of x2+2y2x=1 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2+2(−y)2(−x)=1
Evaluate
More Steps

Evaluate
(−x)2+2(−y)2(−x)
Multiply the numbers
(−x)2+2(−y)−2x
Multiply the first two terms
(−x)2−2y−2x
Rewrite the expression
x2−2y−2x
x2−2y−2x=1
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−2xx2x+y
Calculate
x2+(y2x)2=1
Simplify the expression
x2+2y2x=1
Take the derivative of both sides
dxd(x2+2y2x)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(x2+2y2x)
Use differentiation rules
dxd(x2)+dxd(2y2x)
Use dxdxn=nxn−1 to find derivative
2x+dxd(2y2x)
Evaluate the derivative
More Steps

Evaluate
dxd(2y2x)
Use differentiation rules
dxd(2)×y2x+2×dxd(y)×2x+2y×dxd(2x)
Evaluate the derivative
dxd(2)×y2x+2dxdy×2x+2y×dxd(2x)
Evaluate the derivative
dxd(2)×y2x+2dxdy×2x+2x2y
Calculate
2dxdy×2x+2x2y
2x+2dxdy×2x+2x2y
Calculate
2x2x2x+4xdxdy+2y
2x2x2x+4xdxdy+2y=dxd(1)
Calculate the derivative
2x2x2x+4xdxdy+2y=0
Rewrite the expression
2x2x2x+2y+4xdxdy=0
Simplify
2x2x+2y+4xdxdy=0
Move the constant to the right side
4xdxdy=0−(2x2x+2y)
Subtract the terms
More Steps

Evaluate
0−(2x2x+2y)
Removing 0 doesn't change the value,so remove it from the expression
−(2x2x+2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x2x−2y
4xdxdy=−2x2x−2y
Divide both sides
4x4xdxdy=4x−2x2x−2y
Divide the numbers
dxdy=4x−2x2x−2y
Solution
More Steps

Evaluate
4x−2x2x−2y
Rewrite the expression
4x2(−x2x−y)
Cancel out the common factor 2
2x−x2x−y
Use b−a=−ba=−ba to rewrite the fraction
−2xx2x+y
dxdy=−2xx2x+y
Show Solution

Find the second derivative
dx2d2y=4x23y
Calculate
x2+(y2x)2=1
Simplify the expression
x2+2y2x=1
Take the derivative of both sides
dxd(x2+2y2x)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(x2+2y2x)
Use differentiation rules
dxd(x2)+dxd(2y2x)
Use dxdxn=nxn−1 to find derivative
2x+dxd(2y2x)
Evaluate the derivative
More Steps

Evaluate
dxd(2y2x)
Use differentiation rules
dxd(2)×y2x+2×dxd(y)×2x+2y×dxd(2x)
Evaluate the derivative
dxd(2)×y2x+2dxdy×2x+2y×dxd(2x)
Evaluate the derivative
dxd(2)×y2x+2dxdy×2x+2x2y
Calculate
2dxdy×2x+2x2y
2x+2dxdy×2x+2x2y
Calculate
2x2x2x+4xdxdy+2y
2x2x2x+4xdxdy+2y=dxd(1)
Calculate the derivative
2x2x2x+4xdxdy+2y=0
Rewrite the expression
2x2x2x+2y+4xdxdy=0
Simplify
2x2x+2y+4xdxdy=0
Move the constant to the right side
4xdxdy=0−(2x2x+2y)
Subtract the terms
More Steps

Evaluate
0−(2x2x+2y)
Removing 0 doesn't change the value,so remove it from the expression
−(2x2x+2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x2x−2y
4xdxdy=−2x2x−2y
Divide both sides
4x4xdxdy=4x−2x2x−2y
Divide the numbers
dxdy=4x−2x2x−2y
Divide the numbers
More Steps

Evaluate
4x−2x2x−2y
Rewrite the expression
4x2(−x2x−y)
Cancel out the common factor 2
2x−x2x−y
Use b−a=−ba=−ba to rewrite the fraction
−2xx2x+y
dxdy=−2xx2x+y
Take the derivative of both sides
dxd(dxdy)=dxd(−2xx2x+y)
Calculate the derivative
dx2d2y=dxd(−2xx2x+y)
Use differentiation rules
dx2d2y=−(2x)2dxd(x2x+y)×2x−(x2x+y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(x2x+y)
Use differentiation rules
dxd(x2x)+dxd(y)
Evaluate the derivative
2x+2xx+dxd(y)
Evaluate the derivative
2x+2xx+dxdy
Calculate
2x3x+dxdy×2x
dx2d2y=−(2x)22x3x+dxdy×2x×2x−(x2x+y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(2x)
Simplify
2×dxd(x)
Rewrite the expression
2×1
Any expression multiplied by 1 remains the same
2
dx2d2y=−(2x)22x3x+dxdy×2x×2x−(x2x+y)×2
Calculate
More Steps

Multiply the terms
2x3x+dxdy×2x×2x
Multiply the terms
2x(3x+dxdy×2x)×2x
Multiply the terms
2x6x2+2dxdy×2x×x
dx2d2y=−(2x)22x6x2+2dxdy×2x×x−(x2x+y)×2
Calculate
More Steps

Evaluate
(x2x+y)×2
Use the the distributive property to expand the expression
x2x×2+y×2
Use the commutative property to reorder the terms
2x2x+y×2
Use the commutative property to reorder the terms
2x2x+2y
dx2d2y=−(2x)22x6x2+2dxdy×2x×x−(2x2x+2y)
Calculate
More Steps

Calculate
2x6x2+2dxdy×2x×x−(2x2x+2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2x6x2+2dxdy×2x×x−2x2x−2y
Reduce fractions to a common denominator
2x6x2+2dxdy×2x×x−2x2x2x×2x−2x2y2x
Write all numerators above the common denominator
2x6x2+2dxdy×2x×x−2x2x×2x−2y2x
Multiply the terms
2x6x2+2dxdy×2x×x−4x2−2y2x
Subtract the terms
2x2x2+2dxdy×2x×x−2y2x
dx2d2y=−(2x)22x2x2+2dxdy×2x×x−2y2x
Calculate
More Steps

Evaluate
(2x)2
Evaluate the power
22x2
Evaluate the power
4x2
dx2d2y=−4x22x2x2+2dxdy×2x×x−2y2x
Calculate
dx2d2y=−2x22xx2+dxdy×2x×x−y2x
Use equation dxdy=−2xx2x+y to substitute
dx2d2y=−2x22xx2+−2xx2x+y2xx−y2x
Solution
More Steps

Calculate
−2x22xx2+−2xx2x+y2xx−y2x
Evaluate
−2x22xx2−2xx2x+y×2x×x−y2x
Multiply the terms
−2x22xx2−22x2+y2x−y2x
Subtract the terms
More Steps

Evaluate
x2−22x2+y2x−y2x
Reduce fractions to a common denominator
2x2×2−22x2+y2x−2y2x×2
Write all numerators above the common denominator
2x2×2−(2x2+y2x)−y2x×2
Use the commutative property to reorder the terms
22x2−(2x2+y2x)−y2x×2
Use the commutative property to reorder the terms
22x2−(2x2+y2x)−2y2x
Subtract the terms
2−32x×y
Use b−a=−ba=−ba to rewrite the fraction
−232x×y
−2x22x−232x×y
Divide the terms
More Steps

Evaluate
2x22x−232x×y
Multiply by the reciprocal
−232x×y×2x22x1
Cancel out the common factor 2x
−23y×2x21
Multiply the terms
−2×2x23y
Multiply the terms
−4x23y
−(−4x23y)
Calculate
4x23y
dx2d2y=4x23y
Show Solution
