Question
Find the roots
x1=−125−25145,x2=−125+25145
Alternative Form
x1≈−426.039864,x2≈176.039864
Evaluate
x2+250x−75000
To find the roots of the expression,set the expression equal to 0
x2+250x−75000=0
Substitute a=1,b=250 and c=−75000 into the quadratic formula x=2a−b±b2−4ac
x=2−250±2502−4(−75000)
Simplify the expression
More Steps

Evaluate
2502−4(−75000)
Multiply the numbers
More Steps

Evaluate
4(−75000)
Multiplying or dividing an odd number of negative terms equals a negative
−4×75000
Multiply the numbers
−300000
2502−(−300000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2502+300000
Evaluate the power
62500+300000
Add the numbers
362500
x=2−250±362500
Simplify the radical expression
More Steps

Evaluate
362500
Write the expression as a product where the root of one of the factors can be evaluated
2500×145
Write the number in exponential form with the base of 50
502×145
The root of a product is equal to the product of the roots of each factor
502×145
Reduce the index of the radical and exponent with 2
50145
x=2−250±50145
Separate the equation into 2 possible cases
x=2−250+50145x=2−250−50145
Simplify the expression
More Steps

Evaluate
x=2−250+50145
Divide the terms
More Steps

Evaluate
2−250+50145
Rewrite the expression
22(−125+25145)
Reduce the fraction
−125+25145
x=−125+25145
x=−125+25145x=2−250−50145
Simplify the expression
More Steps

Evaluate
x=2−250−50145
Divide the terms
More Steps

Evaluate
2−250−50145
Rewrite the expression
22(−125−25145)
Reduce the fraction
−125−25145
x=−125−25145
x=−125+25145x=−125−25145
Solution
x1=−125−25145,x2=−125+25145
Alternative Form
x1≈−426.039864,x2≈176.039864
Show Solution
