Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−30−1013,x2=−30+1013
Alternative Form
x1≈−66.055513,x2≈6.055513
Evaluate
x2+60x−400=0
Substitute a=1,b=60 and c=−400 into the quadratic formula x=2a−b±b2−4ac
x=2−60±602−4(−400)
Simplify the expression
More Steps

Evaluate
602−4(−400)
Multiply the numbers
More Steps

Evaluate
4(−400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×400
Multiply the numbers
−1600
602−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
602+1600
Evaluate the power
3600+1600
Add the numbers
5200
x=2−60±5200
Simplify the radical expression
More Steps

Evaluate
5200
Write the expression as a product where the root of one of the factors can be evaluated
400×13
Write the number in exponential form with the base of 20
202×13
The root of a product is equal to the product of the roots of each factor
202×13
Reduce the index of the radical and exponent with 2
2013
x=2−60±2013
Separate the equation into 2 possible cases
x=2−60+2013x=2−60−2013
Simplify the expression
More Steps

Evaluate
x=2−60+2013
Divide the terms
More Steps

Evaluate
2−60+2013
Rewrite the expression
22(−30+1013)
Reduce the fraction
−30+1013
x=−30+1013
x=−30+1013x=2−60−2013
Simplify the expression
More Steps

Evaluate
x=2−60−2013
Divide the terms
More Steps

Evaluate
2−60−2013
Rewrite the expression
22(−30−1013)
Reduce the fraction
−30−1013
x=−30−1013
x=−30+1013x=−30−1013
Solution
x1=−30−1013,x2=−30+1013
Alternative Form
x1≈−66.055513,x2≈6.055513
Show Solution
