Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
Solve for x
x∈(−∞,−5]∪[5,+∞)
Evaluate
x2(−x2−25)≤25(−x2−25)
Move the expression to the left side
x2(−x2−25)−25(−x2−25)≤0
Subtract the terms
More Steps

Evaluate
x2(−x2−25)−25(−x2−25)
Expand the expression
More Steps

Calculate
x2(−x2−25)
Apply the distributive property
x2(−x2)−x2×25
Multiply the terms
−x4−x2×25
Use the commutative property to reorder the terms
−x4−25x2
−x4−25x2−25(−x2−25)
Expand the expression
More Steps

Calculate
25(−x2−25)
Apply the distributive property
25(−x2)−25×25
Multiply the numbers
−25x2−25×25
Multiply the numbers
−25x2−625
−x4−25x2−(−25x2−625)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x4−25x2+25x2+625
The sum of two opposites equals 0
More Steps

Evaluate
−25x2+25x2
Collect like terms
(−25+25)x2
Add the coefficients
0×x2
Calculate
0
−x4+0+625
Remove 0
−x4+625
−x4+625≤0
Rewrite the expression
−x4+625=0
Move the constant to the right-hand side and change its sign
−x4=0−625
Removing 0 doesn't change the value,so remove it from the expression
−x4=−625
Change the signs on both sides of the equation
x4=625
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4625
Simplify the expression
More Steps

Evaluate
4625
Write the number in exponential form with the base of 5
454
Reduce the index of the radical and exponent with 4
5
x=±5
Separate the equation into 2 possible cases
x=5x=−5
Determine the test intervals using the critical values
x<−5−5<x<5x>5
Choose a value form each interval
x1=−6x2=0x3=6
To determine if x<−5 is the solution to the inequality,test if the chosen value x=−6 satisfies the initial inequality
More Steps

Evaluate
(−6)2(−(−6)2−25)≤25(−(−6)2−25)
Simplify
More Steps

Evaluate
(−6)2(−(−6)2−25)
Subtract the numbers
(−6)2(−61)
Evaluate the power
36(−61)
Multiply the numbers
−2196
−2196≤25(−(−6)2−25)
Simplify
More Steps

Evaluate
25(−(−6)2−25)
Subtract the numbers
25(−61)
Multiplying or dividing an odd number of negative terms equals a negative
−25×61
Multiply the numbers
−1525
−2196≤−1525
Check the inequality
true
x<−5 is the solutionx2=0x3=6
To determine if −5<x<5 is the solution to the inequality,test if the chosen value x=0 satisfies the initial inequality
More Steps

Evaluate
02×(−02−25)≤25(−02−25)
Simplify
More Steps

Evaluate
02×(−02−25)
Calculate
02×(−0−25)
Removing 0 doesn't change the value,so remove it from the expression
02×(−25)
Calculate
0×(−25)
Any expression multiplied by 0 equals 0
0
0≤25(−02−25)
Simplify
More Steps

Evaluate
25(−02−25)
Calculate
25(−0−25)
Removing 0 doesn't change the value,so remove it from the expression
25(−25)
Multiplying or dividing an odd number of negative terms equals a negative
−25×25
Multiply the numbers
−625
0≤−625
Check the inequality
false
x<−5 is the solution−5<x<5 is not a solutionx3=6
To determine if x>5 is the solution to the inequality,test if the chosen value x=6 satisfies the initial inequality
More Steps

Evaluate
62(−62−25)≤25(−62−25)
Simplify
More Steps

Evaluate
62(−62−25)
Subtract the numbers
62(−61)
Evaluate the power
36(−61)
Multiply the numbers
−2196
−2196≤25(−62−25)
Simplify
More Steps

Evaluate
25(−62−25)
Subtract the numbers
25(−61)
Multiplying or dividing an odd number of negative terms equals a negative
−25×61
Multiply the numbers
−1525
−2196≤−1525
Check the inequality
true
x<−5 is the solution−5<x<5 is not a solutionx>5 is the solution
The original inequality is a nonstrict inequality,so include the critical value in the solution
x≤−5 is the solutionx≥5 is the solution
Solution
x∈(−∞,−5]∪[5,+∞)
Show Solution
