Question
Simplify the expression
15x4−267750x5
Evaluate
x2(5x2×3)−17x(5x2×3)×70(5x2×3)
Remove the parentheses
x2×5x2×3−17x×5x2×3×70×5x2×3
Multiply
More Steps

Multiply the terms
x2×5x2×3
Multiply the terms with the same base by adding their exponents
x2+2×5×3
Add the numbers
x4×5×3
Multiply the terms
x4×15
Use the commutative property to reorder the terms
15x4
15x4−17x×5x2×3×70×5x2×3
Solution
More Steps

Multiply the terms
17x×5x2×3×70×5x2×3
Multiply the terms
More Steps

Evaluate
17×5×3×70×5×3
Multiply the terms
85×3×70×5×3
Multiply the terms
255×70×5×3
Multiply the terms
17850×5×3
Multiply the terms
89250×3
Multiply the numbers
267750
267750x×x2×x2
Multiply the terms with the same base by adding their exponents
267750x1+2+2
Add the numbers
267750x5
15x4−267750x5
Show Solution

Factor the expression
15x4(1−17850x)
Evaluate
x2(5x2×3)−17x(5x2×3)×70(5x2×3)
Remove the parentheses
x2×5x2×3−17x×5x2×3×70×5x2×3
Multiply the terms
x2×15x2−17x×5x2×3×70×5x2×3
Multiply the terms
More Steps

Evaluate
x2×15x2
Use the commutative property to reorder the terms
15x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
15x4
15x4−17x×5x2×3×70×5x2×3
Multiply the terms
15x4−17x×15x2×70×5x2×3
Multiply the terms
15x4−17x×15x2×70×15x2
Multiply
More Steps

Multiply the terms
17x×15x2×70×15x2
Multiply the terms
More Steps

Evaluate
17×15×70×15
Multiply the terms
255×70×15
Multiply the terms
17850×15
Multiply the numbers
267750
267750x×x2×x2
Multiply the terms with the same base by adding their exponents
267750x1+2+2
Add the numbers
267750x5
15x4−267750x5
Rewrite the expression
15x4−15x4×17850x
Solution
15x4(1−17850x)
Show Solution

Find the roots
x1=0,x2=178501
Alternative Form
x1=0,x2≈5.602241×10−5
Evaluate
x2(5x2×3)−17x(5x2×3)×70(5x2×3)
To find the roots of the expression,set the expression equal to 0
x2(5x2×3)−17x(5x2×3)×70(5x2×3)=0
Multiply the terms
x2×15x2−17x(5x2×3)×70(5x2×3)=0
Multiply the terms
x2×15x2−17x×15x2×70(5x2×3)=0
Multiply the terms
x2×15x2−17x×15x2×70×15x2=0
Multiply the terms
More Steps

Evaluate
x2×15x2
Use the commutative property to reorder the terms
15x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
15x4
15x4−17x×15x2×70×15x2=0
Multiply
More Steps

Multiply the terms
17x×15x2×70×15x2
Multiply the terms
More Steps

Evaluate
17×15×70×15
Multiply the terms
255×70×15
Multiply the terms
17850×15
Multiply the numbers
267750
267750x×x2×x2
Multiply the terms with the same base by adding their exponents
267750x1+2+2
Add the numbers
267750x5
15x4−267750x5=0
Factor the expression
15x4(1−17850x)=0
Divide both sides
x4(1−17850x)=0
Separate the equation into 2 possible cases
x4=01−17850x=0
The only way a power can be 0 is when the base equals 0
x=01−17850x=0
Solve the equation
More Steps

Evaluate
1−17850x=0
Move the constant to the right-hand side and change its sign
−17850x=0−1
Removing 0 doesn't change the value,so remove it from the expression
−17850x=−1
Change the signs on both sides of the equation
17850x=1
Divide both sides
1785017850x=178501
Divide the numbers
x=178501
x=0x=178501
Solution
x1=0,x2=178501
Alternative Form
x1=0,x2≈5.602241×10−5
Show Solution
