Question
Simplify the expression
−6561x142
Evaluate
x2(x2×3)−8−(x2×3)−7
Use the commutative property to reorder the terms
x2(3x2)−8−(x2×3)−7
Use the commutative property to reorder the terms
x2(3x2)−8−(3x2)−7
Multiply the terms
More Steps

Evaluate
x2(3x2)−8
Reduce the numbers
More Steps

Calculate
x2×65611x−16
Rewrite the expression
x2×6561x161
Reduce the numbers
1×6561x141
1×6561x141
Any expression multiplied by 1 remains the same
6561x141
6561x141−(3x2)−7
Rewrite the expression
More Steps

Evaluate
(3x2)−7
To raise a product to a power,raise each factor to that power
3−7(x2)−7
Evaluate the power
More Steps

Evaluate
3−7
Rewrite the expression
371
Simplify
21871
21871(x2)−7
Evaluate the power
More Steps

Evaluate
(x2)−7
Multiply the exponents
x2(−7)
Multiply the terms
x−14
21871x−14
6561x141−21871x−14
Rewrite the expression
More Steps

Evaluate
21871x−14
Express with a positive exponent using a−n=an1
21871×x141
Rewrite the expression
2187x141
6561x141−2187x141
Reduce fractions to a common denominator
6561x141−2187x14×33
Multiply the numbers
6561x141−6561x143
Write all numerators above the common denominator
6561x141−3
Subtract the numbers
6561x14−2
Solution
−6561x142
Show Solution

Find the roots
x∈∅
Evaluate
x2(x2×3)−8−(x2×3)−7
To find the roots of the expression,set the expression equal to 0
x2(x2×3)−8−(x2×3)−7=0
Find the domain
More Steps

Evaluate
x2×3=0
Use the commutative property to reorder the terms
3x2=0
Rewrite the expression
x2=0
The only way a power can not be 0 is when the base not equals 0
x=0
x2(x2×3)−8−(x2×3)−7=0,x=0
Calculate
x2(x2×3)−8−(x2×3)−7=0
Use the commutative property to reorder the terms
x2(3x2)−8−(x2×3)−7=0
Use the commutative property to reorder the terms
x2(3x2)−8−(3x2)−7=0
Multiply the terms
More Steps

Evaluate
x2(3x2)−8
Reduce the numbers
More Steps

Calculate
x2×65611x−16
Rewrite the expression
x2×6561x161
Reduce the numbers
1×6561x141
1×6561x141
Any expression multiplied by 1 remains the same
6561x141
6561x141−(3x2)−7=0
Subtract the terms
More Steps

Simplify
6561x141−(3x2)−7
Express with a positive exponent using a−n=an1
6561x141−(3x2)71
Simplify
6561x141−2187x141
Reduce fractions to a common denominator
6561x141−2187x14×33
Multiply the numbers
6561x141−6561x143
Write all numerators above the common denominator
6561x141−3
Subtract the numbers
6561x14−2
Use b−a=−ba=−ba to rewrite the fraction
−6561x142
−6561x142=0
Rewrite the expression
6561x14−2=0
Cross multiply
−2=6561x14×0
Simplify the equation
−2=0
Solution
x∈∅
Show Solution
