Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−181+109,x2=18−1+109
Alternative Form
x1≈−0.635573,x2≈0.524461
Evaluate
x2−10x2×1=x−3
Simplify
More Steps

Evaluate
x2−10x2×1
Multiply the terms
x2−10x2
Collect like terms by calculating the sum or difference of their coefficients
(1−10)x2
Subtract the numbers
−9x2
−9x2=x−3
Move the expression to the left side
−9x2−x+3=0
Multiply both sides
9x2+x−3=0
Substitute a=9,b=1 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×9−1±12−4×9(−3)
Simplify the expression
x=18−1±12−4×9(−3)
Simplify the expression
More Steps

Evaluate
12−4×9(−3)
1 raised to any power equals to 1
1−4×9(−3)
Multiply
More Steps

Multiply the terms
4×9(−3)
Rewrite the expression
−4×9×3
Multiply the terms
−108
1−(−108)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+108
Add the numbers
109
x=18−1±109
Separate the equation into 2 possible cases
x=18−1+109x=18−1−109
Use b−a=−ba=−ba to rewrite the fraction
x=18−1+109x=−181+109
Solution
x1=−181+109,x2=18−1+109
Alternative Form
x1≈−0.635573,x2≈0.524461
Show Solution
