Question
Find the roots
x1=5−597,x2=5+597
Alternative Form
x1≈−44.244289,x2≈54.244289
Evaluate
x2−10x−2400
To find the roots of the expression,set the expression equal to 0
x2−10x−2400=0
Substitute a=1,b=−10 and c=−2400 into the quadratic formula x=2a−b±b2−4ac
x=210±(−10)2−4(−2400)
Simplify the expression
More Steps

Evaluate
(−10)2−4(−2400)
Multiply the numbers
More Steps

Evaluate
4(−2400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×2400
Multiply the numbers
−9600
(−10)2−(−9600)
Rewrite the expression
102−(−9600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+9600
Evaluate the power
100+9600
Add the numbers
9700
x=210±9700
Simplify the radical expression
More Steps

Evaluate
9700
Write the expression as a product where the root of one of the factors can be evaluated
100×97
Write the number in exponential form with the base of 10
102×97
The root of a product is equal to the product of the roots of each factor
102×97
Reduce the index of the radical and exponent with 2
1097
x=210±1097
Separate the equation into 2 possible cases
x=210+1097x=210−1097
Simplify the expression
More Steps

Evaluate
x=210+1097
Divide the terms
More Steps

Evaluate
210+1097
Rewrite the expression
22(5+597)
Reduce the fraction
5+597
x=5+597
x=5+597x=210−1097
Simplify the expression
More Steps

Evaluate
x=210−1097
Divide the terms
More Steps

Evaluate
210−1097
Rewrite the expression
22(5−597)
Reduce the fraction
5−597
x=5−597
x=5+597x=5−597
Solution
x1=5−597,x2=5+597
Alternative Form
x1≈−44.244289,x2≈54.244289
Show Solution
