Question
Find the roots
x1=2117−31693,x2=2117+31693
Alternative Form
x1≈−3.219122,x2≈120.219122
Evaluate
x2−117x−387
To find the roots of the expression,set the expression equal to 0
x2−117x−387=0
Substitute a=1,b=−117 and c=−387 into the quadratic formula x=2a−b±b2−4ac
x=2117±(−117)2−4(−387)
Simplify the expression
More Steps

Evaluate
(−117)2−4(−387)
Multiply the numbers
More Steps

Evaluate
4(−387)
Multiplying or dividing an odd number of negative terms equals a negative
−4×387
Multiply the numbers
−1548
(−117)2−(−1548)
Rewrite the expression
1172−(−1548)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1172+1548
Evaluate the power
13689+1548
Add the numbers
15237
x=2117±15237
Simplify the radical expression
More Steps

Evaluate
15237
Write the expression as a product where the root of one of the factors can be evaluated
9×1693
Write the number in exponential form with the base of 3
32×1693
The root of a product is equal to the product of the roots of each factor
32×1693
Reduce the index of the radical and exponent with 2
31693
x=2117±31693
Separate the equation into 2 possible cases
x=2117+31693x=2117−31693
Solution
x1=2117−31693,x2=2117+31693
Alternative Form
x1≈−3.219122,x2≈120.219122
Show Solution
