Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=6−46,x2=6+46
Alternative Form
x1≈−0.78233,x2≈12.78233
Evaluate
x2−12x=10
Move the expression to the left side
x2−12x−10=0
Substitute a=1,b=−12 and c=−10 into the quadratic formula x=2a−b±b2−4ac
x=212±(−12)2−4(−10)
Simplify the expression
More Steps

Evaluate
(−12)2−4(−10)
Multiply the numbers
More Steps

Evaluate
4(−10)
Multiplying or dividing an odd number of negative terms equals a negative
−4×10
Multiply the numbers
−40
(−12)2−(−40)
Rewrite the expression
122−(−40)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+40
Evaluate the power
144+40
Add the numbers
184
x=212±184
Simplify the radical expression
More Steps

Evaluate
184
Write the expression as a product where the root of one of the factors can be evaluated
4×46
Write the number in exponential form with the base of 2
22×46
The root of a product is equal to the product of the roots of each factor
22×46
Reduce the index of the radical and exponent with 2
246
x=212±246
Separate the equation into 2 possible cases
x=212+246x=212−246
Simplify the expression
More Steps

Evaluate
x=212+246
Divide the terms
More Steps

Evaluate
212+246
Rewrite the expression
22(6+46)
Reduce the fraction
6+46
x=6+46
x=6+46x=212−246
Simplify the expression
More Steps

Evaluate
x=212−246
Divide the terms
More Steps

Evaluate
212−246
Rewrite the expression
22(6−46)
Reduce the fraction
6−46
x=6−46
x=6+46x=6−46
Solution
x1=6−46,x2=6+46
Alternative Form
x1≈−0.78233,x2≈12.78233
Show Solution
