Question
Find the roots
x1=215−257,x2=215+257
Alternative Form
x1≈−0.51561,x2≈15.51561
Evaluate
x2−15x−8
To find the roots of the expression,set the expression equal to 0
x2−15x−8=0
Substitute a=1,b=−15 and c=−8 into the quadratic formula x=2a−b±b2−4ac
x=215±(−15)2−4(−8)
Simplify the expression
More Steps

Evaluate
(−15)2−4(−8)
Multiply the numbers
More Steps

Evaluate
4(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−4×8
Multiply the numbers
−32
(−15)2−(−32)
Rewrite the expression
152−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+32
Evaluate the power
225+32
Add the numbers
257
x=215±257
Separate the equation into 2 possible cases
x=215+257x=215−257
Solution
x1=215−257,x2=215+257
Alternative Form
x1≈−0.51561,x2≈15.51561
Show Solution
