Question
Solve the equation
Solve for x
Solve for m
2−3+1<m<23+1,x=−∣1−2m2+2m∣5−10m2+10m2−3+1<m<23+1,x=∣1−2m2+2m∣5−10m2+10mm>23+1,x=−∣1−2m2+2m∣5−10m2+10mm>23+1,x=∣1−2m2+2m∣5−10m2+10mm<2−3+1,x=−∣1−2m2+2m∣5−10m2+10mm<2−3+1,x=∣1−2m2+2m∣5−10m2+10m
Evaluate
x2−2(m−1)x2m−5=0
Multiply the terms
x2−2x2m(m−1)−5=0
Rewrite the expression
x2+(−2m2+2m)x2−5=0
Collect like terms by calculating the sum or difference of their coefficients
(1−2m2+2m)x2−5=0
Move the constant to the right side
(1−2m2+2m)x2=5
Divide both sides
1−2m2+2m(1−2m2+2m)x2=1−2m2+2m5
Divide the numbers
x2=1−2m2+2m5
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±1−2m2+2m5
Simplify the expression
More Steps

Evaluate
1−2m2+2m5
To take a root of a fraction,take the root of the numerator and denominator separately
1−2m2+2m5
Multiply by the Conjugate
1−2m2+2m×1−2m2+2m5×1−2m2+2m
Calculate
∣1−2m2+2m∣5×1−2m2+2m
Calculate
More Steps

Evaluate
5×1−2m2+2m
The product of roots with the same index is equal to the root of the product
5(1−2m2+2m)
Calculate the product
5−10m2+10m
∣1−2m2+2m∣5−10m2+10m
x=±∣1−2m2+2m∣5−10m2+10m
Separate the equation into 2 possible cases
x=∣1−2m2+2m∣5−10m2+10mx=−∣1−2m2+2m∣5−10m2+10m
Calculate
{2−3+1<m<23+1x=−∣1−2m2+2m∣5−10m2+10m{2−3+1<m<23+1x=∣1−2m2+2m∣5−10m2+10m{m>23+1x=−∣1−2m2+2m∣5−10m2+10m{m>23+1x=∣1−2m2+2m∣5−10m2+10m{m<2−3+1x=−∣1−2m2+2m∣5−10m2+10m{m<2−3+1x=∣1−2m2+2m∣5−10m2+10m
Solution
2−3+1<m<23+1,x=−∣1−2m2+2m∣5−10m2+10m2−3+1<m<23+1,x=∣1−2m2+2m∣5−10m2+10mm>23+1,x=−∣1−2m2+2m∣5−10m2+10mm>23+1,x=∣1−2m2+2m∣5−10m2+10mm<2−3+1,x=−∣1−2m2+2m∣5−10m2+10mm<2−3+1,x=∣1−2m2+2m∣5−10m2+10m
Show Solution
