Question
Find the roots
x1=100−2035,x2=100+2035
Alternative Form
x1≈−18.321596,x2≈218.321596
Evaluate
x2−200x−4000
To find the roots of the expression,set the expression equal to 0
x2−200x−4000=0
Substitute a=1,b=−200 and c=−4000 into the quadratic formula x=2a−b±b2−4ac
x=2200±(−200)2−4(−4000)
Simplify the expression
More Steps

Evaluate
(−200)2−4(−4000)
Multiply the numbers
More Steps

Evaluate
4(−4000)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4000
Multiply the numbers
−16000
(−200)2−(−16000)
Rewrite the expression
2002−(−16000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2002+16000
Evaluate the power
40000+16000
Add the numbers
56000
x=2200±56000
Simplify the radical expression
More Steps

Evaluate
56000
Write the expression as a product where the root of one of the factors can be evaluated
1600×35
Write the number in exponential form with the base of 40
402×35
The root of a product is equal to the product of the roots of each factor
402×35
Reduce the index of the radical and exponent with 2
4035
x=2200±4035
Separate the equation into 2 possible cases
x=2200+4035x=2200−4035
Simplify the expression
More Steps

Evaluate
x=2200+4035
Divide the terms
More Steps

Evaluate
2200+4035
Rewrite the expression
22(100+2035)
Reduce the fraction
100+2035
x=100+2035
x=100+2035x=2200−4035
Simplify the expression
More Steps

Evaluate
x=2200−4035
Divide the terms
More Steps

Evaluate
2200−4035
Rewrite the expression
22(100−2035)
Reduce the fraction
100−2035
x=100−2035
x=100+2035x=100−2035
Solution
x1=100−2035,x2=100+2035
Alternative Form
x1≈−18.321596,x2≈218.321596
Show Solution
