Question
Find the roots
x1=100−507,x2=100+507
Alternative Form
x1≈−32.287566,x2≈232.287566
Evaluate
x2−200x−7500
To find the roots of the expression,set the expression equal to 0
x2−200x−7500=0
Substitute a=1,b=−200 and c=−7500 into the quadratic formula x=2a−b±b2−4ac
x=2200±(−200)2−4(−7500)
Simplify the expression
More Steps

Evaluate
(−200)2−4(−7500)
Multiply the numbers
More Steps

Evaluate
4(−7500)
Multiplying or dividing an odd number of negative terms equals a negative
−4×7500
Multiply the numbers
−30000
(−200)2−(−30000)
Rewrite the expression
2002−(−30000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2002+30000
Evaluate the power
40000+30000
Add the numbers
70000
x=2200±70000
Simplify the radical expression
More Steps

Evaluate
70000
Write the expression as a product where the root of one of the factors can be evaluated
10000×7
Write the number in exponential form with the base of 100
1002×7
The root of a product is equal to the product of the roots of each factor
1002×7
Reduce the index of the radical and exponent with 2
1007
x=2200±1007
Separate the equation into 2 possible cases
x=2200+1007x=2200−1007
Simplify the expression
More Steps

Evaluate
x=2200+1007
Divide the terms
More Steps

Evaluate
2200+1007
Rewrite the expression
22(100+507)
Reduce the fraction
100+507
x=100+507
x=100+507x=2200−1007
Simplify the expression
More Steps

Evaluate
x=2200−1007
Divide the terms
More Steps

Evaluate
2200−1007
Rewrite the expression
22(100−507)
Reduce the fraction
100−507
x=100−507
x=100+507x=100−507
Solution
x1=100−507,x2=100+507
Alternative Form
x1≈−32.287566,x2≈232.287566
Show Solution
