Question
Find the roots
x1=10−163,x2=10+163
Alternative Form
x1≈−2.767145,x2≈22.767145
Evaluate
x2−20x−63
To find the roots of the expression,set the expression equal to 0
x2−20x−63=0
Substitute a=1,b=−20 and c=−63 into the quadratic formula x=2a−b±b2−4ac
x=220±(−20)2−4(−63)
Simplify the expression
More Steps

Evaluate
(−20)2−4(−63)
Multiply the numbers
More Steps

Evaluate
4(−63)
Multiplying or dividing an odd number of negative terms equals a negative
−4×63
Multiply the numbers
−252
(−20)2−(−252)
Rewrite the expression
202−(−252)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
202+252
Evaluate the power
400+252
Add the numbers
652
x=220±652
Simplify the radical expression
More Steps

Evaluate
652
Write the expression as a product where the root of one of the factors can be evaluated
4×163
Write the number in exponential form with the base of 2
22×163
The root of a product is equal to the product of the roots of each factor
22×163
Reduce the index of the radical and exponent with 2
2163
x=220±2163
Separate the equation into 2 possible cases
x=220+2163x=220−2163
Simplify the expression
More Steps

Evaluate
x=220+2163
Divide the terms
More Steps

Evaluate
220+2163
Rewrite the expression
22(10+163)
Reduce the fraction
10+163
x=10+163
x=10+163x=220−2163
Simplify the expression
More Steps

Evaluate
x=220−2163
Divide the terms
More Steps

Evaluate
220−2163
Rewrite the expression
22(10−163)
Reduce the fraction
10−163
x=10−163
x=10+163x=10−163
Solution
x1=10−163,x2=10+163
Alternative Form
x1≈−2.767145,x2≈22.767145
Show Solution
