Question
Find the roots
x1=11−481,x2=11+481
Alternative Form
x1≈−10.931712,x2≈32.931712
Evaluate
x2−22x−360
To find the roots of the expression,set the expression equal to 0
x2−22x−360=0
Substitute a=1,b=−22 and c=−360 into the quadratic formula x=2a−b±b2−4ac
x=222±(−22)2−4(−360)
Simplify the expression
More Steps

Evaluate
(−22)2−4(−360)
Multiply the numbers
More Steps

Evaluate
4(−360)
Multiplying or dividing an odd number of negative terms equals a negative
−4×360
Multiply the numbers
−1440
(−22)2−(−1440)
Rewrite the expression
222−(−1440)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
222+1440
Evaluate the power
484+1440
Add the numbers
1924
x=222±1924
Simplify the radical expression
More Steps

Evaluate
1924
Write the expression as a product where the root of one of the factors can be evaluated
4×481
Write the number in exponential form with the base of 2
22×481
The root of a product is equal to the product of the roots of each factor
22×481
Reduce the index of the radical and exponent with 2
2481
x=222±2481
Separate the equation into 2 possible cases
x=222+2481x=222−2481
Simplify the expression
More Steps

Evaluate
x=222+2481
Divide the terms
More Steps

Evaluate
222+2481
Rewrite the expression
22(11+481)
Reduce the fraction
11+481
x=11+481
x=11+481x=222−2481
Simplify the expression
More Steps

Evaluate
x=222−2481
Divide the terms
More Steps

Evaluate
222−2481
Rewrite the expression
22(11−481)
Reduce the fraction
11−481
x=11−481
x=11+481x=11−481
Solution
x1=11−481,x2=11+481
Alternative Form
x1≈−10.931712,x2≈32.931712
Show Solution
