Question
Solve the equation
Solve for x
Solve for k
x=1+3k+−20−8k+9k2x=1+3k−−20−8k+9k2
Evaluate
x2−2x(1+3k)+7(3+2k)=0
Rewrite the expression
x2+(−2−6k)x+21+14k=0
Substitute a=1,b=−2−6k and c=21+14k into the quadratic formula x=2a−b±b2−4ac
x=22+6k±(−2−6k)2−4(21+14k)
Simplify the expression
More Steps

Evaluate
(−2−6k)2−4(21+14k)
Multiply the terms
More Steps

Evaluate
4(21+14k)
Apply the distributive property
4×21+4×14k
Multiply the numbers
84+4×14k
Multiply the terms
84+56k
(−2−6k)2−(84+56k)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−2−6k)2−84−56k
Evaluate the power
More Steps

Evaluate
(−2−6k)2
A negative base raised to an even power equals a positive
(2+6k)2
Use (a+b)2=a2+2ab+b2 to expand the expression
22+2×2×6k+(6k)2
Calculate
4+24k+36k2
4+24k+36k2−84−56k
Subtract the numbers
−80+24k+36k2−56k
Subtract the terms
More Steps

Evaluate
24k−56k
Collect like terms by calculating the sum or difference of their coefficients
(24−56)k
Subtract the numbers
−32k
−80−32k+36k2
x=22+6k±−80−32k+36k2
Simplify the radical expression
More Steps

Evaluate
−80−32k+36k2
Factor the expression
4(−20−8k+9k2)
The root of a product is equal to the product of the roots of each factor
4×−20−8k+9k2
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2−20−8k+9k2
x=22+6k±2−20−8k+9k2
Separate the equation into 2 possible cases
x=22+6k+2−20−8k+9k2x=22+6k−2−20−8k+9k2
Simplify the expression
More Steps

Evaluate
x=22+6k+2−20−8k+9k2
Divide the terms
More Steps

Evaluate
22+6k+2−20−8k+9k2
Rewrite the expression
22(1+3k+−20−8k+9k2)
Reduce the fraction
1+3k+−20−8k+9k2
x=1+3k+−20−8k+9k2
x=1+3k+−20−8k+9k2x=22+6k−2−20−8k+9k2
Solution
More Steps

Evaluate
x=22+6k−2−20−8k+9k2
Divide the terms
More Steps

Evaluate
22+6k−2−20−8k+9k2
Rewrite the expression
22(1+3k−−20−8k+9k2)
Reduce the fraction
1+3k−−20−8k+9k2
x=1+3k−−20−8k+9k2
x=1+3k+−20−8k+9k2x=1+3k−−20−8k+9k2
Show Solution
