Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−9−230,x2=−9+230
Alternative Form
x1≈−19.954451,x2≈1.954451
Evaluate
x2−39=−2x×9
Multiply the terms
x2−39=−18x
Move the expression to the left side
x2−39+18x=0
Rewrite in standard form
x2+18x−39=0
Substitute a=1,b=18 and c=−39 into the quadratic formula x=2a−b±b2−4ac
x=2−18±182−4(−39)
Simplify the expression
More Steps

Evaluate
182−4(−39)
Multiply the numbers
More Steps

Evaluate
4(−39)
Multiplying or dividing an odd number of negative terms equals a negative
−4×39
Multiply the numbers
−156
182−(−156)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
182+156
Evaluate the power
324+156
Add the numbers
480
x=2−18±480
Simplify the radical expression
More Steps

Evaluate
480
Write the expression as a product where the root of one of the factors can be evaluated
16×30
Write the number in exponential form with the base of 4
42×30
The root of a product is equal to the product of the roots of each factor
42×30
Reduce the index of the radical and exponent with 2
430
x=2−18±430
Separate the equation into 2 possible cases
x=2−18+430x=2−18−430
Simplify the expression
More Steps

Evaluate
x=2−18+430
Divide the terms
More Steps

Evaluate
2−18+430
Rewrite the expression
22(−9+230)
Reduce the fraction
−9+230
x=−9+230
x=−9+230x=2−18−430
Simplify the expression
More Steps

Evaluate
x=2−18−430
Divide the terms
More Steps

Evaluate
2−18−430
Rewrite the expression
22(−9−230)
Reduce the fraction
−9−230
x=−9−230
x=−9+230x=−9−230
Solution
x1=−9−230,x2=−9+230
Alternative Form
x1≈−19.954451,x2≈1.954451
Show Solution
