Question
Find the roots
x1=23−41,x2=23+41
Alternative Form
x1≈−1.701562,x2≈4.701562
Evaluate
x2−3x−8
To find the roots of the expression,set the expression equal to 0
x2−3x−8=0
Substitute a=1,b=−3 and c=−8 into the quadratic formula x=2a−b±b2−4ac
x=23±(−3)2−4(−8)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−8)
Multiply the numbers
More Steps

Evaluate
4(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−4×8
Multiply the numbers
−32
(−3)2−(−32)
Rewrite the expression
32−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+32
Evaluate the power
9+32
Add the numbers
41
x=23±41
Separate the equation into 2 possible cases
x=23+41x=23−41
Solution
x1=23−41,x2=23+41
Alternative Form
x1≈−1.701562,x2≈4.701562
Show Solution
