Question
Find the roots
x1=20−410,x2=20+410
Alternative Form
x1≈−0.248457,x2≈40.248457
Evaluate
x2−40x−10
To find the roots of the expression,set the expression equal to 0
x2−40x−10=0
Substitute a=1,b=−40 and c=−10 into the quadratic formula x=2a−b±b2−4ac
x=240±(−40)2−4(−10)
Simplify the expression
More Steps

Evaluate
(−40)2−4(−10)
Multiply the numbers
More Steps

Evaluate
4(−10)
Multiplying or dividing an odd number of negative terms equals a negative
−4×10
Multiply the numbers
−40
(−40)2−(−40)
Rewrite the expression
402−(−40)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+40
Evaluate the power
1600+40
Add the numbers
1640
x=240±1640
Simplify the radical expression
More Steps

Evaluate
1640
Write the expression as a product where the root of one of the factors can be evaluated
4×410
Write the number in exponential form with the base of 2
22×410
The root of a product is equal to the product of the roots of each factor
22×410
Reduce the index of the radical and exponent with 2
2410
x=240±2410
Separate the equation into 2 possible cases
x=240+2410x=240−2410
Simplify the expression
More Steps

Evaluate
x=240+2410
Divide the terms
More Steps

Evaluate
240+2410
Rewrite the expression
22(20+410)
Reduce the fraction
20+410
x=20+410
x=20+410x=240−2410
Simplify the expression
More Steps

Evaluate
x=240−2410
Divide the terms
More Steps

Evaluate
240−2410
Rewrite the expression
22(20−410)
Reduce the fraction
20−410
x=20−410
x=20+410x=20−410
Solution
x1=20−410,x2=20+410
Alternative Form
x1≈−0.248457,x2≈40.248457
Show Solution
