Question
Solve the equation
Solve for x
Solve for G
Solve for n
x=2+1+3eGnx=2−1+3eGn
Evaluate
x2−4x+3=3Gen
Multiply the numbers
x2−4x+3=3eGn
Move the expression to the left side
x2−4x+3−3eGn=0
Substitute a=1,b=−4 and c=3−3eGn into the quadratic formula x=2a−b±b2−4ac
x=24±(−4)2−4(3−3eGn)
Simplify the expression
More Steps

Evaluate
(−4)2−4(3−3eGn)
Multiply the terms
More Steps

Evaluate
4(3−3eGn)
Apply the distributive property
4×3−4×3eGn
Multiply the numbers
12−4×3eGn
Multiply the terms
12−12eGn
(−4)2−(12−12eGn)
Rewrite the expression
42−(12−12eGn)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42−12+12eGn
Evaluate the power
16−12+12eGn
Subtract the numbers
4+12eGn
x=24±4+12eGn
Simplify the radical expression
More Steps

Evaluate
4+12eGn
Factor the expression
4(1+3eGn)
The root of a product is equal to the product of the roots of each factor
4×1+3eGn
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
21+3eGn
x=24±21+3eGn
Separate the equation into 2 possible cases
x=24+21+3eGnx=24−21+3eGn
Simplify the expression
More Steps

Evaluate
x=24+21+3eGn
Divide the terms
More Steps

Evaluate
24+21+3eGn
Rewrite the expression
22(2+1+3eGn)
Reduce the fraction
2+1+3eGn
x=2+1+3eGn
x=2+1+3eGnx=24−21+3eGn
Solution
More Steps

Evaluate
x=24−21+3eGn
Divide the terms
More Steps

Evaluate
24−21+3eGn
Rewrite the expression
22(2−1+3eGn)
Reduce the fraction
2−1+3eGn
x=2−1+3eGn
x=2+1+3eGnx=2−1+3eGn
Show Solution
