Question
Solve the equation
Solve for x
Solve for y
x=2y3+2y6+1x=2y3−2y6+1
Evaluate
x2−4xy×y2=4
Multiply
More Steps

Evaluate
4xy×y2
Multiply the terms with the same base by adding their exponents
4xy1+2
Add the numbers
4xy3
x2−4xy3=4
Rewrite the expression
x2−4y3x=4
Move the expression to the left side
x2−4y3x−4=0
Substitute a=1,b=−4y3 and c=−4 into the quadratic formula x=2a−b±b2−4ac
x=24y3±(−4y3)2−4(−4)
Simplify the expression
More Steps

Evaluate
(−4y3)2−4(−4)
Multiply the numbers
More Steps

Evaluate
4(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4
Multiply the numbers
−16
(−4y3)2−(−16)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−4y3)2+16
Evaluate the power
16y6+16
x=24y3±16y6+16
Simplify the radical expression
More Steps

Evaluate
16y6+16
Factor the expression
16(y6+1)
The root of a product is equal to the product of the roots of each factor
16×y6+1
Evaluate the root
More Steps

Evaluate
16
Write the number in exponential form with the base of 4
42
Reduce the index of the radical and exponent with 2
4
4y6+1
x=24y3±4y6+1
Separate the equation into 2 possible cases
x=24y3+4y6+1x=24y3−4y6+1
Simplify the expression
More Steps

Evaluate
x=24y3+4y6+1
Divide the terms
More Steps

Evaluate
24y3+4y6+1
Rewrite the expression
22(2y3+2y6+1)
Reduce the fraction
2y3+2y6+1
x=2y3+2y6+1
x=2y3+2y6+1x=24y3−4y6+1
Solution
More Steps

Evaluate
x=24y3−4y6+1
Divide the terms
More Steps

Evaluate
24y3−4y6+1
Rewrite the expression
22(2y3−2y6+1)
Reduce the fraction
2y3−2y6+1
x=2y3−2y6+1
x=2y3+2y6+1x=2y3−2y6+1
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
x2−4xy×y2=4
Multiply
More Steps

Evaluate
4xy×y2
Multiply the terms with the same base by adding their exponents
4xy1+2
Add the numbers
4xy3
x2−4xy3=4
To test if the graph of x2−4xy3=4 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2−4(−x)(−y)3=4
Evaluate
More Steps

Evaluate
(−x)2−4(−x)(−y)3
Multiply the terms
More Steps

Multiply the terms
4(−x)(−y)3
Any expression multiplied by 1 remains the same
−4x(−y)3
Multiply the terms
−(−4xy3)
Multiply the first two terms
4xy3
(−x)2−4xy3
Rewrite the expression
x2−4xy3
x2−4xy3=4
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=6xy2x−2y3
Calculate
x2−4xyy2=4
Simplify the expression
x2−4xy3=4
Take the derivative of both sides
dxd(x2−4xy3)=dxd(4)
Calculate the derivative
More Steps

Evaluate
dxd(x2−4xy3)
Use differentiation rules
dxd(x2)+dxd(−4xy3)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−4xy3)
Evaluate the derivative
More Steps

Evaluate
dxd(−4xy3)
Use differentiation rules
dxd(−4x)×y3−4x×dxd(y3)
Evaluate the derivative
−4y3−4x×dxd(y3)
Evaluate the derivative
−4y3−12xy2dxdy
2x−4y3−12xy2dxdy
2x−4y3−12xy2dxdy=dxd(4)
Calculate the derivative
2x−4y3−12xy2dxdy=0
Move the expression to the right-hand side and change its sign
−12xy2dxdy=0−(2x−4y3)
Subtract the terms
More Steps

Evaluate
0−(2x−4y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+4y3
Removing 0 doesn't change the value,so remove it from the expression
−2x+4y3
−12xy2dxdy=−2x+4y3
Divide both sides
−12xy2−12xy2dxdy=−12xy2−2x+4y3
Divide the numbers
dxdy=−12xy2−2x+4y3
Solution
More Steps

Evaluate
−12xy2−2x+4y3
Rewrite the expression
−12xy22(−x+2y3)
Cancel out the common factor 2
−6xy2−x+2y3
Use b−a=−ba=−ba to rewrite the fraction
−6xy2−x+2y3
Rewrite the expression
6xy2x−2y3
dxdy=6xy2x−2y3
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=18y5x2y3x+8y6−x2
Calculate
x2−4xyy2=4
Simplify the expression
x2−4xy3=4
Take the derivative of both sides
dxd(x2−4xy3)=dxd(4)
Calculate the derivative
More Steps

Evaluate
dxd(x2−4xy3)
Use differentiation rules
dxd(x2)+dxd(−4xy3)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−4xy3)
Evaluate the derivative
More Steps

Evaluate
dxd(−4xy3)
Use differentiation rules
dxd(−4x)×y3−4x×dxd(y3)
Evaluate the derivative
−4y3−4x×dxd(y3)
Evaluate the derivative
−4y3−12xy2dxdy
2x−4y3−12xy2dxdy
2x−4y3−12xy2dxdy=dxd(4)
Calculate the derivative
2x−4y3−12xy2dxdy=0
Move the expression to the right-hand side and change its sign
−12xy2dxdy=0−(2x−4y3)
Subtract the terms
More Steps

Evaluate
0−(2x−4y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+4y3
Removing 0 doesn't change the value,so remove it from the expression
−2x+4y3
−12xy2dxdy=−2x+4y3
Divide both sides
−12xy2−12xy2dxdy=−12xy2−2x+4y3
Divide the numbers
dxdy=−12xy2−2x+4y3
Divide the numbers
More Steps

Evaluate
−12xy2−2x+4y3
Rewrite the expression
−12xy22(−x+2y3)
Cancel out the common factor 2
−6xy2−x+2y3
Use b−a=−ba=−ba to rewrite the fraction
−6xy2−x+2y3
Rewrite the expression
6xy2x−2y3
dxdy=6xy2x−2y3
Take the derivative of both sides
dxd(dxdy)=dxd(6xy2x−2y3)
Calculate the derivative
dx2d2y=dxd(6xy2x−2y3)
Use differentiation rules
dx2d2y=(6xy2)2dxd(x−2y3)×6xy2−(x−2y3)×dxd(6xy2)
Calculate the derivative
More Steps

Evaluate
dxd(x−2y3)
Use differentiation rules
dxd(x)+dxd(−2y3)
Use dxdxn=nxn−1 to find derivative
1+dxd(−2y3)
Evaluate the derivative
1−6y2dxdy
dx2d2y=(6xy2)2(1−6y2dxdy)×6xy2−(x−2y3)×dxd(6xy2)
Calculate the derivative
More Steps

Evaluate
dxd(6xy2)
Use differentiation rules
dxd(6)×xy2+6×dxd(x)×y2+6x×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(6)×xy2+6y2+6x×dxd(y2)
Evaluate the derivative
dxd(6)×xy2+6y2+12xydxdy
Calculate
6y2+12xydxdy
dx2d2y=(6xy2)2(1−6y2dxdy)×6xy2−(x−2y3)(6y2+12xydxdy)
Calculate
More Steps

Evaluate
(1−6y2dxdy)×6xy2
Use the the distributive property to expand the expression
1×6xy2−6y2dxdy×6xy2
Any expression multiplied by 1 remains the same
6xy2−6y2dxdy×6xy2
Multiply the terms
6xy2−36y4dxdy×x
Use the commutative property to reorder the terms
6xy2−36y4xdxdy
dx2d2y=(6xy2)26xy2−36y4xdxdy−(x−2y3)(6y2+12xydxdy)
Calculate
More Steps

Evaluate
(x−2y3)(6y2+12xydxdy)
Use the the distributive property to expand the expression
(x−2y3)×6y2+(x−2y3)×12xydxdy
Multiply the terms
6xy2−12y5+(x−2y3)×12xydxdy
Multiply the terms
6xy2−12y5+12x2ydxdy−24y4xdxdy
dx2d2y=(6xy2)26xy2−36y4xdxdy−(6xy2−12y5+12x2ydxdy−24y4xdxdy)
Calculate
More Steps

Calculate
6xy2−36y4xdxdy−(6xy2−12y5+12x2ydxdy−24y4xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6xy2−36y4xdxdy−6xy2+12y5−12x2ydxdy+24y4xdxdy
The sum of two opposites equals 0
0−36y4xdxdy+12y5−12x2ydxdy+24y4xdxdy
Remove 0
−36y4xdxdy+12y5−12x2ydxdy+24y4xdxdy
Add the terms
−12y4xdxdy+12y5−12x2ydxdy
dx2d2y=(6xy2)2−12y4xdxdy+12y5−12x2ydxdy
Calculate
More Steps

Evaluate
(6xy2)2
Evaluate the power
62x2(y2)2
Evaluate the power
36x2(y2)2
Evaluate the power
36x2y4
dx2d2y=36x2y4−12y4xdxdy+12y5−12x2ydxdy
Calculate
dx2d2y=3x2y3−y3xdxdy+y4−x2dxdy
Use equation dxdy=6xy2x−2y3 to substitute
dx2d2y=3x2y3−y3x×6xy2x−2y3+y4−x2×6xy2x−2y3
Solution
More Steps

Calculate
3x2y3−y3x×6xy2x−2y3+y4−x2×6xy2x−2y3
Multiply the terms
3x2y3−6y(x−2y3)+y4−x2×6xy2x−2y3
Multiply the terms
More Steps

Multiply the terms
−x2×6xy2x−2y3
Cancel out the common factor x
−x×6y2x−2y3
Multiply the terms
−6y2x(x−2y3)
3x2y3−6y(x−2y3)+y4−6y2x(x−2y3)
Calculate the sum or difference
More Steps

Evaluate
−6y(x−2y3)+y4−6y2x(x−2y3)
Reduce fractions to a common denominator
−6y2y(x−2y3)y2+6y2y4×6y2−6y2x(x−2y3)
Write all numerators above the common denominator
6y2−y(x−2y3)y2+y4×6y2−x(x−2y3)
Multiply the terms
6y2−(y3x−2y6)+y4×6y2−x(x−2y3)
Multiply the terms
6y2−(y3x−2y6)+6y6−x(x−2y3)
Multiply the terms
6y2−(y3x−2y6)+6y6−(x2−2xy3)
Calculate the sum or difference
6y2y3x+8y6−x2
3x2y36y2y3x+8y6−x2
Multiply by the reciprocal
6y2y3x+8y6−x2×3x2y31
Multiply the terms
6y2×3x2y3y3x+8y6−x2
Multiply the terms
More Steps

Evaluate
6y2×3x2y3
Multiply the numbers
18y2x2y3
Multiply the terms
18y5x2
18y5x2y3x+8y6−x2
dx2d2y=18y5x2y3x+8y6−x2
Show Solution
