Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=56−3137,x2=56+3137
Alternative Form
x1≈−0.008928,x2≈112.008928
Evaluate
x2−8x×14=1
Multiply the terms
x2−112x=1
Move the expression to the left side
x2−112x−1=0
Substitute a=1,b=−112 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2112±(−112)2−4(−1)
Simplify the expression
More Steps

Evaluate
(−112)2−4(−1)
Simplify
(−112)2−(−4)
Rewrite the expression
1122−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1122+4
Evaluate the power
12544+4
Add the numbers
12548
x=2112±12548
Simplify the radical expression
More Steps

Evaluate
12548
Write the expression as a product where the root of one of the factors can be evaluated
4×3137
Write the number in exponential form with the base of 2
22×3137
The root of a product is equal to the product of the roots of each factor
22×3137
Reduce the index of the radical and exponent with 2
23137
x=2112±23137
Separate the equation into 2 possible cases
x=2112+23137x=2112−23137
Simplify the expression
More Steps

Evaluate
x=2112+23137
Divide the terms
More Steps

Evaluate
2112+23137
Rewrite the expression
22(56+3137)
Reduce the fraction
56+3137
x=56+3137
x=56+3137x=2112−23137
Simplify the expression
More Steps

Evaluate
x=2112−23137
Divide the terms
More Steps

Evaluate
2112−23137
Rewrite the expression
22(56−3137)
Reduce the fraction
56−3137
x=56−3137
x=56+3137x=56−3137
Solution
x1=56−3137,x2=56+3137
Alternative Form
x1≈−0.008928,x2≈112.008928
Show Solution
