Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=64−4123,x2=64+4123
Alternative Form
x1≈−0.210591,x2≈128.210591
Evaluate
x2−8x×16=27
Multiply the terms
x2−128x=27
Move the expression to the left side
x2−128x−27=0
Substitute a=1,b=−128 and c=−27 into the quadratic formula x=2a−b±b2−4ac
x=2128±(−128)2−4(−27)
Simplify the expression
More Steps

Evaluate
(−128)2−4(−27)
Multiply the numbers
More Steps

Evaluate
4(−27)
Multiplying or dividing an odd number of negative terms equals a negative
−4×27
Multiply the numbers
−108
(−128)2−(−108)
Rewrite the expression
1282−(−108)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1282+108
Evaluate the power
16384+108
Add the numbers
16492
x=2128±16492
Simplify the radical expression
More Steps

Evaluate
16492
Write the expression as a product where the root of one of the factors can be evaluated
4×4123
Write the number in exponential form with the base of 2
22×4123
The root of a product is equal to the product of the roots of each factor
22×4123
Reduce the index of the radical and exponent with 2
24123
x=2128±24123
Separate the equation into 2 possible cases
x=2128+24123x=2128−24123
Simplify the expression
More Steps

Evaluate
x=2128+24123
Divide the terms
More Steps

Evaluate
2128+24123
Rewrite the expression
22(64+4123)
Reduce the fraction
64+4123
x=64+4123
x=64+4123x=2128−24123
Simplify the expression
More Steps

Evaluate
x=2128−24123
Divide the terms
More Steps

Evaluate
2128−24123
Rewrite the expression
22(64−4123)
Reduce the fraction
64−4123
x=64−4123
x=64+4123x=64−4123
Solution
x1=64−4123,x2=64+4123
Alternative Form
x1≈−0.210591,x2≈128.210591
Show Solution
