Question
Find the roots
x1=4−295,x2=4+295
Alternative Form
x1≈−15.493589,x2≈23.493589
Evaluate
x2−8x−364
To find the roots of the expression,set the expression equal to 0
x2−8x−364=0
Substitute a=1,b=−8 and c=−364 into the quadratic formula x=2a−b±b2−4ac
x=28±(−8)2−4(−364)
Simplify the expression
More Steps

Evaluate
(−8)2−4(−364)
Multiply the numbers
More Steps

Evaluate
4(−364)
Multiplying or dividing an odd number of negative terms equals a negative
−4×364
Multiply the numbers
−1456
(−8)2−(−1456)
Rewrite the expression
82−(−1456)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+1456
Evaluate the power
64+1456
Add the numbers
1520
x=28±1520
Simplify the radical expression
More Steps

Evaluate
1520
Write the expression as a product where the root of one of the factors can be evaluated
16×95
Write the number in exponential form with the base of 4
42×95
The root of a product is equal to the product of the roots of each factor
42×95
Reduce the index of the radical and exponent with 2
495
x=28±495
Separate the equation into 2 possible cases
x=28+495x=28−495
Simplify the expression
More Steps

Evaluate
x=28+495
Divide the terms
More Steps

Evaluate
28+495
Rewrite the expression
22(4+295)
Reduce the fraction
4+295
x=4+295
x=4+295x=28−495
Simplify the expression
More Steps

Evaluate
x=28−495
Divide the terms
More Steps

Evaluate
28−495
Rewrite the expression
22(4−295)
Reduce the fraction
4−295
x=4−295
x=4+295x=4−295
Solution
x1=4−295,x2=4+295
Alternative Form
x1≈−15.493589,x2≈23.493589
Show Solution
