Question
Find the roots
x1=21−229,x2=21+229
Alternative Form
x1≈−7.066373,x2≈8.066373
Evaluate
x2−x−57
To find the roots of the expression,set the expression equal to 0
x2−x−57=0
Substitute a=1,b=−1 and c=−57 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4(−57)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−57)
Evaluate the power
1−4(−57)
Multiply the numbers
More Steps

Evaluate
4(−57)
Multiplying or dividing an odd number of negative terms equals a negative
−4×57
Multiply the numbers
−228
1−(−228)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+228
Add the numbers
229
x=21±229
Separate the equation into 2 possible cases
x=21+229x=21−229
Solution
x1=21−229,x2=21+229
Alternative Form
x1≈−7.066373,x2≈8.066373
Show Solution
