Question
Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
x2y2−9x2−4y2=0
To test if the graph of x2y2−9x2−4y2=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2(−y)2−9(−x)2−4(−y)2=0
Evaluate
More Steps

Evaluate
(−x)2(−y)2−9(−x)2−4(−y)2
Multiply the terms
x2y2−9(−x)2−4(−y)2
Multiply the terms
x2y2−9x2−4(−y)2
Multiply the terms
x2y2−9x2−4y2
x2y2−9x2−4y2=0
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=x2y−4y−xy2+9x
Calculate
x2y2−9x2−4y2=0
Take the derivative of both sides
dxd(x2y2−9x2−4y2)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2y2−9x2−4y2)
Use differentiation rules
dxd(x2y2)+dxd(−9x2)+dxd(−4y2)
Evaluate the derivative
More Steps

Evaluate
dxd(x2y2)
Use differentiation rules
dxd(x2)×y2+x2×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2xy2+x2×dxd(y2)
Evaluate the derivative
2xy2+2x2ydxdy
2xy2+2x2ydxdy+dxd(−9x2)+dxd(−4y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−9x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−9×dxd(x2)
Use dxdxn=nxn−1 to find derivative
−9×2x
Multiply the terms
−18x
2xy2+2x2ydxdy−18x+dxd(−4y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−4y2)
Use differentiation rules
dyd(−4y2)×dxdy
Evaluate the derivative
−8ydxdy
2xy2+2x2ydxdy−18x−8ydxdy
2xy2+2x2ydxdy−18x−8ydxdy=dxd(0)
Calculate the derivative
2xy2+2x2ydxdy−18x−8ydxdy=0
Collect like terms by calculating the sum or difference of their coefficients
2xy2−18x+(2x2y−8y)dxdy=0
Move the constant to the right side
(2x2y−8y)dxdy=0−(2xy2−18x)
Subtract the terms
More Steps

Evaluate
0−(2xy2−18x)
Removing 0 doesn't change the value,so remove it from the expression
−(2xy2−18x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2xy2+18x
(2x2y−8y)dxdy=−2xy2+18x
Divide both sides
2x2y−8y(2x2y−8y)dxdy=2x2y−8y−2xy2+18x
Divide the numbers
dxdy=2x2y−8y−2xy2+18x
Solution
More Steps

Evaluate
2x2y−8y−2xy2+18x
Rewrite the expression
2x2y−8y2(−xy2+9x)
Rewrite the expression
2(x2y−4y)2(−xy2+9x)
Reduce the fraction
x2y−4y−xy2+9x
dxdy=x2y−4y−xy2+9x
Show Solution
