Question
Solve the equation
Solve for x
Solve for y
x=33+2y2
Evaluate
x3−2y2=3
Move the expression to the right-hand side and change its sign
x3=3+2y2
Take the 3-th root on both sides of the equation
3x3=33+2y2
Solution
x=33+2y2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x3−2y2=3
To test if the graph of x3−2y2=3 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)3−2(−y)2=3
Evaluate
More Steps

Evaluate
(−x)3−2(−y)2
Multiply the terms
(−x)3−2y2
Rewrite the expression
−x3−2y2
−x3−2y2=3
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=4y3x2
Calculate
x3−2⋅y2=3
Take the derivative of both sides
dxd(x3−2y2)=dxd(3)
Calculate the derivative
More Steps

Evaluate
dxd(x3−2y2)
Use differentiation rules
dxd(x3)+dxd(−2y2)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(−2y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y2)
Use differentiation rules
dyd(−2y2)×dxdy
Evaluate the derivative
−4ydxdy
3x2−4ydxdy
3x2−4ydxdy=dxd(3)
Calculate the derivative
3x2−4ydxdy=0
Move the expression to the right-hand side and change its sign
−4ydxdy=0−3x2
Removing 0 doesn't change the value,so remove it from the expression
−4ydxdy=−3x2
Divide both sides
−4y−4ydxdy=−4y−3x2
Divide the numbers
dxdy=−4y−3x2
Solution
dxdy=4y3x2
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=16y324xy2−9x4
Calculate
x3−2⋅y2=3
Take the derivative of both sides
dxd(x3−2y2)=dxd(3)
Calculate the derivative
More Steps

Evaluate
dxd(x3−2y2)
Use differentiation rules
dxd(x3)+dxd(−2y2)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(−2y2)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y2)
Use differentiation rules
dyd(−2y2)×dxdy
Evaluate the derivative
−4ydxdy
3x2−4ydxdy
3x2−4ydxdy=dxd(3)
Calculate the derivative
3x2−4ydxdy=0
Move the expression to the right-hand side and change its sign
−4ydxdy=0−3x2
Removing 0 doesn't change the value,so remove it from the expression
−4ydxdy=−3x2
Divide both sides
−4y−4ydxdy=−4y−3x2
Divide the numbers
dxdy=−4y−3x2
Cancel out the common factor −1
dxdy=4y3x2
Take the derivative of both sides
dxd(dxdy)=dxd(4y3x2)
Calculate the derivative
dx2d2y=dxd(4y3x2)
Use differentiation rules
dx2d2y=(4y)2dxd(3x2)×4y−3x2×dxd(4y)
Calculate the derivative
More Steps

Evaluate
dxd(3x2)
Simplify
3×dxd(x2)
Rewrite the expression
3×2x
Multiply the numbers
6x
dx2d2y=(4y)26x×4y−3x2×dxd(4y)
Calculate the derivative
More Steps

Evaluate
dxd(4y)
Simplify
4×dxd(y)
Calculate
4dxdy
dx2d2y=(4y)26x×4y−3x2×4dxdy
Calculate
dx2d2y=(4y)224xy−3x2×4dxdy
Calculate
dx2d2y=(4y)224xy−12x2dxdy
Calculate
More Steps

Evaluate
(4y)2
Evaluate the power
42y2
Evaluate the power
16y2
dx2d2y=16y224xy−12x2dxdy
Calculate
dx2d2y=4y26xy−3x2dxdy
Use equation dxdy=4y3x2 to substitute
dx2d2y=4y26xy−3x2×4y3x2
Solution
More Steps

Calculate
4y26xy−3x2×4y3x2
Multiply the terms
More Steps

Multiply the terms
3x2×4y3x2
Multiply the terms
4y3x2×3x2
Multiply the terms
4y9x4
4y26xy−4y9x4
Subtract the terms
More Steps

Simplify
6xy−4y9x4
Reduce fractions to a common denominator
4y6xy×4y−4y9x4
Write all numerators above the common denominator
4y6xy×4y−9x4
Multiply the terms
4y24xy2−9x4
4y24y24xy2−9x4
Multiply by the reciprocal
4y24xy2−9x4×4y21
Multiply the terms
4y×4y224xy2−9x4
Multiply the terms
More Steps

Evaluate
4y×4y2
Multiply the numbers
16y×y2
Multiply the terms
16y3
16y324xy2−9x4
dx2d2y=16y324xy2−9x4
Show Solution
