Question
Solve the equation
y=3x3−3x2+3x5
Evaluate
x3−3xy2×3y=1
Multiply
More Steps

Evaluate
3xy2×3y
Multiply the terms
9xy2×y
Multiply the terms with the same base by adding their exponents
9xy2+1
Add the numbers
9xy3
x3−9xy3=1
Move the expression to the right-hand side and change its sign
−9xy3=1−x3
Divide both sides
−9x−9xy3=−9x1−x3
Divide the numbers
y3=−9x1−x3
Divide the numbers
More Steps

Evaluate
−9x1−x3
Use b−a=−ba=−ba to rewrite the fraction
−9x1−x3
Rewrite the expression
9x−1+x3
y3=9x−1+x3
Take the 3-th root on both sides of the equation
3y3=39x−1+x3
Calculate
y=39x−1+x3
Solution
More Steps

Evaluate
39x−1+x3
To take a root of a fraction,take the root of the numerator and denominator separately
39x3−1+x3
Multiply by the Conjugate
39x×392x23−1+x3×392x2
Calculate
32x3−1+x3×392x2
Calculate
More Steps

Evaluate
3−1+x3×392x2
The product of roots with the same index is equal to the root of the product
3(−1+x3)×92x2
Calculate the product
3−92x2+92x5
Factor the expression
392(−x2+x5)
The root of a product is equal to the product of the roots of each factor
392×3−x2+x5
Evaluate the root
333×3−x2+x5
Calculate the product
33−3x2+3x5
32x33−3x2+3x5
Reduce the fraction
More Steps

Calculate
323
Use the product rule aman=an−m to simplify the expression
32−11
Subtract the terms
311
Simplify
31
3x3−3x2+3x5
y=3x3−3x2+3x5
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x3−3xy2×3y=1
Multiply
More Steps

Evaluate
3xy2×3y
Multiply the terms
9xy2×y
Multiply the terms with the same base by adding their exponents
9xy2+1
Add the numbers
9xy3
x3−9xy3=1
To test if the graph of x3−9xy3=1 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)3−9(−x)(−y)3=1
Evaluate
More Steps

Evaluate
(−x)3−9(−x)(−y)3
Multiply the terms
More Steps

Multiply the terms
9(−x)(−y)3
Any expression multiplied by 1 remains the same
−9x(−y)3
Multiply the terms
−(−9xy3)
Multiply the first two terms
9xy3
(−x)3−9xy3
Rewrite the expression
−x3−9xy3
−x3−9xy3=1
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=9xy2x2−3y3
Calculate
x3−3xy23y=1
Simplify the expression
x3−9xy3=1
Take the derivative of both sides
dxd(x3−9xy3)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(x3−9xy3)
Use differentiation rules
dxd(x3)+dxd(−9xy3)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(−9xy3)
Evaluate the derivative
More Steps

Evaluate
dxd(−9xy3)
Use differentiation rules
dxd(−9x)×y3−9x×dxd(y3)
Evaluate the derivative
−9y3−9x×dxd(y3)
Evaluate the derivative
−9y3−27xy2dxdy
3x2−9y3−27xy2dxdy
3x2−9y3−27xy2dxdy=dxd(1)
Calculate the derivative
3x2−9y3−27xy2dxdy=0
Move the expression to the right-hand side and change its sign
−27xy2dxdy=0−(3x2−9y3)
Subtract the terms
More Steps

Evaluate
0−(3x2−9y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−3x2+9y3
Removing 0 doesn't change the value,so remove it from the expression
−3x2+9y3
−27xy2dxdy=−3x2+9y3
Divide both sides
−27xy2−27xy2dxdy=−27xy2−3x2+9y3
Divide the numbers
dxdy=−27xy2−3x2+9y3
Solution
More Steps

Evaluate
−27xy2−3x2+9y3
Rewrite the expression
−27xy23(−x2+3y3)
Cancel out the common factor 3
−9xy2−x2+3y3
Use b−a=−ba=−ba to rewrite the fraction
−9xy2−x2+3y3
Rewrite the expression
9xy2x2−3y3
dxdy=9xy2x2−3y3
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=81y5x212y3x2+36y6−2x4
Calculate
x3−3xy23y=1
Simplify the expression
x3−9xy3=1
Take the derivative of both sides
dxd(x3−9xy3)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(x3−9xy3)
Use differentiation rules
dxd(x3)+dxd(−9xy3)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(−9xy3)
Evaluate the derivative
More Steps

Evaluate
dxd(−9xy3)
Use differentiation rules
dxd(−9x)×y3−9x×dxd(y3)
Evaluate the derivative
−9y3−9x×dxd(y3)
Evaluate the derivative
−9y3−27xy2dxdy
3x2−9y3−27xy2dxdy
3x2−9y3−27xy2dxdy=dxd(1)
Calculate the derivative
3x2−9y3−27xy2dxdy=0
Move the expression to the right-hand side and change its sign
−27xy2dxdy=0−(3x2−9y3)
Subtract the terms
More Steps

Evaluate
0−(3x2−9y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−3x2+9y3
Removing 0 doesn't change the value,so remove it from the expression
−3x2+9y3
−27xy2dxdy=−3x2+9y3
Divide both sides
−27xy2−27xy2dxdy=−27xy2−3x2+9y3
Divide the numbers
dxdy=−27xy2−3x2+9y3
Divide the numbers
More Steps

Evaluate
−27xy2−3x2+9y3
Rewrite the expression
−27xy23(−x2+3y3)
Cancel out the common factor 3
−9xy2−x2+3y3
Use b−a=−ba=−ba to rewrite the fraction
−9xy2−x2+3y3
Rewrite the expression
9xy2x2−3y3
dxdy=9xy2x2−3y3
Take the derivative of both sides
dxd(dxdy)=dxd(9xy2x2−3y3)
Calculate the derivative
dx2d2y=dxd(9xy2x2−3y3)
Use differentiation rules
dx2d2y=(9xy2)2dxd(x2−3y3)×9xy2−(x2−3y3)×dxd(9xy2)
Calculate the derivative
More Steps

Evaluate
dxd(x2−3y3)
Use differentiation rules
dxd(x2)+dxd(−3y3)
Use dxdxn=nxn−1 to find derivative
2x+dxd(−3y3)
Evaluate the derivative
2x−9y2dxdy
dx2d2y=(9xy2)2(2x−9y2dxdy)×9xy2−(x2−3y3)×dxd(9xy2)
Calculate the derivative
More Steps

Evaluate
dxd(9xy2)
Use differentiation rules
dxd(9)×xy2+9×dxd(x)×y2+9x×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(9)×xy2+9y2+9x×dxd(y2)
Evaluate the derivative
dxd(9)×xy2+9y2+18xydxdy
Calculate
9y2+18xydxdy
dx2d2y=(9xy2)2(2x−9y2dxdy)×9xy2−(x2−3y3)(9y2+18xydxdy)
Calculate
More Steps

Evaluate
(2x−9y2dxdy)×9xy2
Use the the distributive property to expand the expression
2x×9xy2−9y2dxdy×9xy2
Multiply the terms
18x2y2−9y2dxdy×9xy2
Multiply the terms
18x2y2−81y4dxdy×x
Use the commutative property to reorder the terms
18x2y2−81y4xdxdy
dx2d2y=(9xy2)218x2y2−81y4xdxdy−(x2−3y3)(9y2+18xydxdy)
Calculate
More Steps

Evaluate
(x2−3y3)(9y2+18xydxdy)
Use the the distributive property to expand the expression
(x2−3y3)×9y2+(x2−3y3)×18xydxdy
Multiply the terms
9x2y2−27y5+(x2−3y3)×18xydxdy
Multiply the terms
9x2y2−27y5+18x3ydxdy−54y4xdxdy
dx2d2y=(9xy2)218x2y2−81y4xdxdy−(9x2y2−27y5+18x3ydxdy−54y4xdxdy)
Calculate
More Steps

Calculate
18x2y2−81y4xdxdy−(9x2y2−27y5+18x3ydxdy−54y4xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
18x2y2−81y4xdxdy−9x2y2+27y5−18x3ydxdy+54y4xdxdy
Subtract the terms
9x2y2−81y4xdxdy+27y5−18x3ydxdy+54y4xdxdy
Add the terms
9x2y2−27y4xdxdy+27y5−18x3ydxdy
dx2d2y=(9xy2)29x2y2−27y4xdxdy+27y5−18x3ydxdy
Calculate
More Steps

Evaluate
(9xy2)2
Evaluate the power
92x2(y2)2
Evaluate the power
81x2(y2)2
Evaluate the power
81x2y4
dx2d2y=81x2y49x2y2−27y4xdxdy+27y5−18x3ydxdy
Calculate
dx2d2y=9x2y3yx2−3y3xdxdy+3y4−2x3dxdy
Use equation dxdy=9xy2x2−3y3 to substitute
dx2d2y=9x2y3yx2−3y3x×9xy2x2−3y3+3y4−2x3×9xy2x2−3y3
Solution
More Steps

Calculate
9x2y3yx2−3y3x×9xy2x2−3y3+3y4−2x3×9xy2x2−3y3
Multiply the terms
9x2y3yx2−3y(x2−3y3)+3y4−2x3×9xy2x2−3y3
Multiply the terms
9x2y3yx2−3y(x2−3y3)+3y4−9y22x2(x2−3y3)
Calculate the sum or difference
More Steps

Evaluate
yx2−3y(x2−3y3)+3y4−9y22x2(x2−3y3)
Reduce fractions to a common denominator
3×3y2yx2×3×3y2−3×3y2y(x2−3y3)×3y2+3×3y23y4×3×3y2−9y22x2(x2−3y3)
Multiply the numbers
9y2yx2×3×3y2−3×3y2y(x2−3y3)×3y2+3×3y23y4×3×3y2−9y22x2(x2−3y3)
Multiply the numbers
9y2yx2×3×3y2−9y2y(x2−3y3)×3y2+3×3y23y4×3×3y2−9y22x2(x2−3y3)
Multiply the numbers
9y2yx2×3×3y2−9y2y(x2−3y3)×3y2+9y23y4×3×3y2−9y22x2(x2−3y3)
Write all numerators above the common denominator
9y2yx2×3×3y2−y(x2−3y3)×3y2+3y4×3×3y2−2x2(x2−3y3)
Multiply the terms
9y29y3x2−y(x2−3y3)×3y2+3y4×3×3y2−2x2(x2−3y3)
Multiply the terms
9y29y3x2−(3y3x2−9y6)+3y4×3×3y2−2x2(x2−3y3)
Multiply the terms
9y29y3x2−(3y3x2−9y6)+27y6−2x2(x2−3y3)
Multiply the terms
9y29y3x2−(3y3x2−9y6)+27y6−(2x4−6y3x2)
Calculate the sum or difference
9y212y3x2+36y6−2x4
9x2y39y212y3x2+36y6−2x4
Multiply by the reciprocal
9y212y3x2+36y6−2x4×9x2y31
Multiply the terms
9y2×9x2y312y3x2+36y6−2x4
Multiply the terms
More Steps

Evaluate
9y2×9x2y3
Multiply the numbers
81y2x2y3
Multiply the terms
81y5x2
81y5x212y3x2+36y6−2x4
dx2d2y=81y5x212y3x2+36y6−2x4
Show Solution
