Question
Simplify the expression
x3+3x2−96x4
Evaluate
x3+3x2−16x4×6
Solution
x3+3x2−96x4
Show Solution

Factor the expression
x2(x+3−96x2)
Evaluate
x3+3x2−16x4×6
Multiply the terms
x3+3x2−96x4
Rewrite the expression
x2×x+x2×3−x2×96x2
Solution
x2(x+3−96x2)
Show Solution

Find the roots
x1=1921−1153,x2=0,x3=1921+1153
Alternative Form
x1≈−0.171645,x2=0,x3≈0.182062
Evaluate
x3+3x2−16x4×6
To find the roots of the expression,set the expression equal to 0
x3+3x2−16x4×6=0
Multiply the terms
x3+3x2−96x4=0
Factor the expression
x2(x+3−96x2)=0
Separate the equation into 2 possible cases
x2=0x+3−96x2=0
The only way a power can be 0 is when the base equals 0
x=0x+3−96x2=0
Solve the equation
More Steps

Evaluate
x+3−96x2=0
Rewrite in standard form
−96x2+x+3=0
Multiply both sides
96x2−x−3=0
Substitute a=96,b=−1 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×961±(−1)2−4×96(−3)
Simplify the expression
x=1921±(−1)2−4×96(−3)
Simplify the expression
More Steps

Evaluate
(−1)2−4×96(−3)
Evaluate the power
1−4×96(−3)
Multiply
1−(−1152)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+1152
Add the numbers
1153
x=1921±1153
Separate the equation into 2 possible cases
x=1921+1153x=1921−1153
x=0x=1921+1153x=1921−1153
Solution
x1=1921−1153,x2=0,x3=1921+1153
Alternative Form
x1≈−0.171645,x2=0,x3≈0.182062
Show Solution
