Question
Factor the expression
(x+1)(x2−3x−1)
Evaluate
x3−2x2−4x−1
Calculate
x3−3x2−x+x2−3x−1
Rewrite the expression
x×x2−x×3x−x+x2−3x−1
Factor out x from the expression
x(x2−3x−1)+x2−3x−1
Solution
(x+1)(x2−3x−1)
Show Solution

Find the roots
x1=−1,x2=23−13,x3=23+13
Alternative Form
x1=−1,x2≈−0.302776,x3≈3.302776
Evaluate
x3−2x2−4x−1
To find the roots of the expression,set the expression equal to 0
x3−2x2−4x−1=0
Factor the expression
(x+1)(x2−3x−1)=0
Separate the equation into 2 possible cases
x+1=0x2−3x−1=0
Solve the equation
More Steps

Evaluate
x+1=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=−1x2−3x−1=0
Solve the equation
More Steps

Evaluate
x2−3x−1=0
Substitute a=1,b=−3 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=23±(−3)2−4(−1)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−1)
Simplify
(−3)2−(−4)
Rewrite the expression
32−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+4
Evaluate the power
9+4
Add the numbers
13
x=23±13
Separate the equation into 2 possible cases
x=23+13x=23−13
x=−1x=23+13x=23−13
Solution
x1=−1,x2=23−13,x3=23+13
Alternative Form
x1=−1,x2≈−0.302776,x3≈3.302776
Show Solution
