Question
Factor the expression
(x−1)(x2−2x+8)
Evaluate
x3−3x2+10x−8
Calculate
x3−2x2+8x−x2+2x−8
Rewrite the expression
x×x2−x×2x+x×8−x2+2x−8
Factor out x from the expression
x(x2−2x+8)−x2+2x−8
Factor out −1 from the expression
x(x2−2x+8)−(x2−2x+8)
Solution
(x−1)(x2−2x+8)
Show Solution

Find the roots
x1=1−7×i,x2=1+7×i,x3=1
Alternative Form
x1≈1−2.645751i,x2≈1+2.645751i,x3=1
Evaluate
x3−3x2+10x−8
To find the roots of the expression,set the expression equal to 0
x3−3x2+10x−8=0
Factor the expression
(x−1)(x2−2x+8)=0
Separate the equation into 2 possible cases
x−1=0x2−2x+8=0
Solve the equation
More Steps

Evaluate
x−1=0
Move the constant to the right-hand side and change its sign
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
x=1x2−2x+8=0
Solve the equation
More Steps

Evaluate
x2−2x+8=0
Substitute a=1,b=−2 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=22±(−2)2−4×8
Simplify the expression
More Steps

Evaluate
(−2)2−4×8
Multiply the numbers
(−2)2−32
Rewrite the expression
22−32
Evaluate the power
4−32
Subtract the numbers
−28
x=22±−28
Simplify the radical expression
More Steps

Evaluate
−28
Evaluate the power
28×−1
Evaluate the power
28×i
Evaluate the power
27×i
x=22±27×i
Separate the equation into 2 possible cases
x=22+27×ix=22−27×i
Simplify the expression
x=1+7×ix=22−27×i
Simplify the expression
x=1+7×ix=1−7×i
x=1x=1+7×ix=1−7×i
Solution
x1=1−7×i,x2=1+7×i,x3=1
Alternative Form
x1≈1−2.645751i,x2≈1+2.645751i,x3=1
Show Solution
