Question
Factor the expression
(x−5)(x+1)2
Evaluate
x3−3x2−9x−5
Calculate
x3+2x2+x−5x2−10x−5
Rewrite the expression
x×x2+x×2x+x−5x2−5×2x−5
Factor out x from the expression
x(x2+2x+1)−5x2−5×2x−5
Factor out −5 from the expression
x(x2+2x+1)−5(x2+2x+1)
Factor out x2+2x+1 from the expression
(x−5)(x2+2x+1)
Solution
(x−5)(x+1)2
Show Solution

Find the roots
x1=−1,x2=5
Evaluate
x3−3x2−9x−5
To find the roots of the expression,set the expression equal to 0
x3−3x2−9x−5=0
Factor the expression
(x−5)(x+1)2=0
Separate the equation into 2 possible cases
x−5=0(x+1)2=0
Solve the equation
More Steps

Evaluate
x−5=0
Move the constant to the right side
x=0+5
Removing 0 doesn't change the value,so remove it from the expression
x=5
x=5(x+1)2=0
Solve the equation
More Steps

Evaluate
(x+1)2=0
The only way a power can be 0 is when the base equals 0
x+1=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=5x=−1
Solution
x1=−1,x2=5
Show Solution
