Question
Solve the equation
x1=0,x2=3128
Alternative Form
x1=0,x2=42.6˙
Evaluate
x3×3x2=16x4×8
Multiply
More Steps

Evaluate
x3×3x2
Multiply the terms with the same base by adding their exponents
x3+2×3
Add the numbers
x5×3
Use the commutative property to reorder the terms
3x5
3x5=16x4×8
Multiply the terms
3x5=128x4
Add or subtract both sides
3x5−128x4=0
Factor the expression
x4(3x−128)=0
Separate the equation into 2 possible cases
x4=03x−128=0
The only way a power can be 0 is when the base equals 0
x=03x−128=0
Solve the equation
More Steps

Evaluate
3x−128=0
Move the constant to the right-hand side and change its sign
3x=0+128
Removing 0 doesn't change the value,so remove it from the expression
3x=128
Divide both sides
33x=3128
Divide the numbers
x=3128
x=0x=3128
Solution
x1=0,x2=3128
Alternative Form
x1=0,x2=42.6˙
Show Solution
