Question
Solve the equation
x1=−1021+3489,x2=1021+3489
Alternative Form
x1≈−93.45589,x2≈93.45589
Evaluate
2x4−2100x2−19800000=0
Multiply both sides of the equation by LCD
(2x4−2100x2−19800000)×2=0×2
Simplify the equation
More Steps

Evaluate
(2x4−2100x2−19800000)×2
Apply the distributive property
2x4×2−2100x2×2−19800000×2
Simplify
x4−2100x2×2−19800000×2
Multiply the numbers
x4−4200x2−19800000×2
Multiply the numbers
x4−4200x2−39600000
x4−4200x2−39600000=0×2
Any expression multiplied by 0 equals 0
x4−4200x2−39600000=0
Solve the equation using substitution t=x2
t2−4200t−39600000=0
Substitute a=1,b=−4200 and c=−39600000 into the quadratic formula t=2a−b±b2−4ac
t=24200±(−4200)2−4(−39600000)
Simplify the expression
More Steps

Evaluate
(−4200)2−4(−39600000)
Multiply the numbers
More Steps

Evaluate
4(−39600000)
Multiplying or dividing an odd number of negative terms equals a negative
−4×39600000
Multiply the numbers
−158400000
(−4200)2−(−158400000)
Rewrite the expression
42002−(−158400000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42002+158400000
t=24200±42002+158400000
Simplify the radical expression
More Steps

Evaluate
42002+158400000
Add the numbers
6002×489
Rewrite the expression
6002×489
Simplify the root
600489
t=24200±600489
Separate the equation into 2 possible cases
t=24200+600489t=24200−600489
Simplify the expression
More Steps

Evaluate
t=24200+600489
Divide the terms
More Steps

Evaluate
24200+600489
Rewrite the expression
22(2100+300489)
Reduce the fraction
2100+300489
t=2100+300489
t=2100+300489t=24200−600489
Simplify the expression
More Steps

Evaluate
t=24200−600489
Divide the terms
More Steps

Evaluate
24200−600489
Rewrite the expression
22(2100−300489)
Reduce the fraction
2100−300489
t=2100−300489
t=2100+300489t=2100−300489
Substitute back
x2=2100+300489x2=2100−300489
Solve the equation for x
More Steps

Substitute back
x2=2100+300489
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±2100+300489
Simplify the expression
More Steps

Evaluate
2100+300489
Factor the expression
300(7+489)
The root of a product is equal to the product of the roots of each factor
300×7+489
Evaluate the root
103×7+489
Calculate the product
1021+3489
x=±1021+3489
Separate the equation into 2 possible cases
x=1021+3489x=−1021+3489
x=1021+3489x=−1021+3489x2=2100−300489
Since the left-hand side is always positive or 0,and the right-hand side is always negative,the statement is false for any value of x
x=1021+3489x=−1021+3489x∈/R
Find the union
x=1021+3489x=−1021+3489
Solution
x1=−1021+3489,x2=1021+3489
Alternative Form
x1≈−93.45589,x2≈93.45589
Show Solution
