Question
Simplify the expression
x4−2s3tx2+4s2t2x2−2st3x2
Evaluate
x4−2stx2(s−t)2
Solution
More Steps

Calculate
−2stx2(s−t)2
Simplify
−2stx2(s2−2st+t2)
Apply the distributive property
−2stx2s2−(−2stx2×2st)−2stx2t2
Multiply the terms
More Steps

Evaluate
s×s2
Use the product rule an×am=an+m to simplify the expression
s1+2
Add the numbers
s3
−2s3tx2−(−2stx2×2st)−2stx2t2
Multiply the terms
More Steps

Evaluate
−2stx2×2st
Multiply the numbers
−4stx2st
Multiply the terms
−4s2tx2t
Multiply the terms
−4s2t2x2
−2s3tx2−(−4s2t2x2)−2stx2t2
Multiply the terms
More Steps

Evaluate
t×t2
Use the product rule an×am=an+m to simplify the expression
t1+2
Add the numbers
t3
−2s3tx2−(−4s2t2x2)−2st3x2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2s3tx2+4s2t2x2−2st3x2
x4−2s3tx2+4s2t2x2−2st3x2
Show Solution

Factor the expression
(x2−2s3t+4s2t2−2st3)x2
Evaluate
x4−2stx2(s−t)2
Rewrite the expression
x2×x2−2st(s−t)2x2
Factor out x2 from the expression
(x2−2st(s−t)2)x2
Solution
(x2−2s3t+4s2t2−2st3)x2
Show Solution
