Question
Find the roots
x∈/R
Evaluate
x4−x2+1
To find the roots of the expression,set the expression equal to 0
x4−x2+1=0
Solve the equation using substitution t=x2
t2−t+1=0
Substitute a=1,b=−1 and c=1 into the quadratic formula t=2a−b±b2−4ac
t=21±(−1)2−4
Simplify the expression
More Steps

Evaluate
(−1)2−4
Evaluate the power
1−4
Subtract the numbers
−3
t=21±−3
Simplify the radical expression
More Steps

Evaluate
−3
Evaluate the power
3×−1
Evaluate the power
3×i
t=21±3×i
Separate the equation into 2 possible cases
t=21+3×it=21−3×i
Simplify the expression
t=21+23it=21−3×i
Simplify the expression
t=21+23it=21−23i
Substitute back
x2=21+23ix2=21−23i
Solve the equation for x
More Steps

Substitute back
x2=21+23i
Simplify
x=21+23i
Rewrite the complex number in polar form
More Steps

Evaluate
21+23i
Determine the modulus and the argument of the complex number
r=(21)2+(23)2θ=arctan2123
Calculate
r=1θ=arctan2123
Convert to radians
r=1θ=3π
Substitute the given values into the formula r(cosθ+isinθ)
1×(cos(3π)+isin(3π))
x=1×(cos(3π)+isin(3π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
x=1×(cos(23π+2kπ)+isin(23π+2kπ))
Simplify
x=cos(23π+2kπ)+isin(23π+2kπ)
Since n=2,substitute k=0,1 into the expression
x1=cos(23π+2×0×π)+isin(23π+2×0×π)x2=cos(23π+2×1×π)+isin(23π+2×1×π)
Calculate
More Steps

Evaluate
23π+2×0×π
Any expression multiplied by 0 equals 0
23π+0
Removing 0 doesn't change the value,so remove it from the expression
23π
Rewrite the expression
3π×21
To multiply the fractions,multiply the numerators and denominators separately
3×2π
Multiply the numbers
6π
x1=cos(6π)+isin(6π)x2=cos(23π+2×1×π)+isin(23π+2×1×π)
Calculate
More Steps

Evaluate
23π+2×1×π
Multiply the terms
23π+2π
Calculate
237π
Rewrite the expression
37π×21
To multiply the fractions,multiply the numerators and denominators separately
3×27π
Multiply the numbers
67π
x1=cos(6π)+isin(6π)x2=cos(67π)+isin(67π)
Calculate
x1=23+21ix2=−23−21i
x1=23+21ix2=−23−21ix2=21−23i
Solve the equation for x
More Steps

Substitute back
x2=21−23i
Simplify
x=21−23i
Rewrite the complex number in polar form
More Steps

Evaluate
21−23i
Determine the modulus and the argument of the complex number
r=(21)2+(−23)2θ=arctan21−23
Calculate
r=1θ=arctan21−23
Convert to radians
r=1θ=−3π
Since 21−23i lies in the IV quadrant, add 2π to get the argument in the IV quadrant
r=1θ=−3π+2π
Simplify
r=1θ=35π
Substitute the given values into the formula r(cosθ+isinθ)
1×(cos(35π)+isin(35π))
x=1×(cos(35π)+isin(35π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
x=1×(cos(235π+2kπ)+isin(235π+2kπ))
Simplify
x=cos(235π+2kπ)+isin(235π+2kπ)
Since n=2,substitute k=0,1 into the expression
x1=cos(235π+2×0×π)+isin(235π+2×0×π)x2=cos(235π+2×1×π)+isin(235π+2×1×π)
Calculate
More Steps

Evaluate
235π+2×0×π
Any expression multiplied by 0 equals 0
235π+0
Removing 0 doesn't change the value,so remove it from the expression
235π
Rewrite the expression
35π×21
To multiply the fractions,multiply the numerators and denominators separately
3×25π
Multiply the numbers
65π
x1=cos(65π)+isin(65π)x2=cos(235π+2×1×π)+isin(235π+2×1×π)
Calculate
More Steps

Evaluate
235π+2×1×π
Multiply the terms
235π+2π
Calculate
2311π
Rewrite the expression
311π×21
To multiply the fractions,multiply the numerators and denominators separately
3×211π
Multiply the numbers
611π
x1=cos(65π)+isin(65π)x2=cos(611π)+isin(611π)
Calculate
x1=−23+21ix2=23−21i
x1=23+21ix2=−23−21ix1=−23+21ix2=23−21i
Solution
x∈/R
Show Solution
