Question
Factor the expression
(x2−x−3)(x4+x3+4x2−3x+9)
Evaluate
x6−10x3−27
Calculate
x6+x5+4x4−3x3+9x2−x5−x4−4x3+3x2−9x−3x4−3x3−12x2+9x−27
Rewrite the expression
x2×x4+x2×x3+x2×4x2−x2×3x+x2×9−x×x4−x×x3−x×4x2+x×3x−x×9−3x4−3x3−3×4x2+3×3x−3×9
Factor out x2 from the expression
x2(x4+x3+4x2−3x+9)−x×x4−x×x3−x×4x2+x×3x−x×9−3x4−3x3−3×4x2+3×3x−3×9
Factor out −x from the expression
x2(x4+x3+4x2−3x+9)−x(x4+x3+4x2−3x+9)−3x4−3x3−3×4x2+3×3x−3×9
Factor out −3 from the expression
x2(x4+x3+4x2−3x+9)−x(x4+x3+4x2−3x+9)−3(x4+x3+4x2−3x+9)
Solution
(x2−x−3)(x4+x3+4x2−3x+9)
Show Solution

Find the roots
x1=21−13,x2=21+13
Alternative Form
x1≈−1.302776,x2≈2.302776
Evaluate
x6−10x3−27
To find the roots of the expression,set the expression equal to 0
x6−10x3−27=0
Factor the expression
(x2−x−3)(x4+x3+4x2−3x+9)=0
Separate the equation into 2 possible cases
x2−x−3=0x4+x3+4x2−3x+9=0
Solve the equation
More Steps

Evaluate
x2−x−3=0
Substitute a=1,b=−1 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4(−3)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−3)
Evaluate the power
1−4(−3)
Multiply the numbers
1−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+12
Add the numbers
13
x=21±13
Separate the equation into 2 possible cases
x=21+13x=21−13
x=21+13x=21−13x4+x3+4x2−3x+9=0
Solve the equation
x=21+13x=21−13x∈/R
Find the union
x=21+13x=21−13
Solution
x1=21−13,x2=21+13
Alternative Form
x1≈−1.302776,x2≈2.302776
Show Solution
