Question
Simplify the expression
x6−9x4−59049x2
Evaluate
x6−9x4−81x2×729
Solution
x6−9x4−59049x2
Show Solution

Factor the expression
x2(x4−9x2−59049)
Evaluate
x6−9x4−81x2×729
Multiply the terms
x6−9x4−59049x2
Rewrite the expression
x2×x4−x2×9x2−x2×59049
Solution
x2(x4−9x2−59049)
Show Solution

Find the roots
x1=−232+22917,x2=0,x3=232+22917
Alternative Form
x1≈−15.733457,x2=0,x3≈15.733457
Evaluate
x6−9x4−81x2×729
To find the roots of the expression,set the expression equal to 0
x6−9x4−81x2×729=0
Multiply the terms
x6−9x4−59049x2=0
Factor the expression
x2(x4−9x2−59049)=0
Separate the equation into 2 possible cases
x2=0x4−9x2−59049=0
The only way a power can be 0 is when the base equals 0
x=0x4−9x2−59049=0
Solve the equation
More Steps

Evaluate
x4−9x2−59049=0
Solve the equation using substitution t=x2
t2−9t−59049=0
Substitute a=1,b=−9 and c=−59049 into the quadratic formula t=2a−b±b2−4ac
t=29±(−9)2−4(−59049)
Simplify the expression
More Steps

Evaluate
(−9)2−4(−59049)
Multiply the numbers
(−9)2−(−236196)
Rewrite the expression
92−(−236196)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
92+236196
Evaluate the power
81+236196
Add the numbers
236277
t=29±236277
Simplify the radical expression
More Steps

Evaluate
236277
Write the expression as a product where the root of one of the factors can be evaluated
81×2917
Write the number in exponential form with the base of 9
92×2917
The root of a product is equal to the product of the roots of each factor
92×2917
Reduce the index of the radical and exponent with 2
92917
t=29±92917
Separate the equation into 2 possible cases
t=29+92917t=29−92917
Substitute back
x2=29+92917x2=29−92917
Solve the equation for x
More Steps

Substitute back
x2=29+92917
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±29+92917
Simplify the expression
x=±232+22917
Separate the equation into 2 possible cases
x=232+22917x=−232+22917
x=232+22917x=−232+22917x2=29−92917
Solve the equation for x
More Steps

Substitute back
x2=29−92917
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±29−92917
Simplify the expression
x=±2322917−2i
Separate the equation into 2 possible cases
x=2322917−2ix=−2322917−2i
x=232+22917x=−232+22917x=2322917−2ix=−2322917−2i
x=0x=232+22917x=−232+22917
Solution
x1=−232+22917,x2=0,x3=232+22917
Alternative Form
x1≈−15.733457,x2=0,x3≈15.733457
Show Solution
