Question
Simplify the expression
1296x−144x2+4x3
Evaluate
x(36−2x)2
Expand the expression
More Steps

Evaluate
(36−2x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
362−2×36×2x+(2x)2
Calculate
1296−144x+4x2
x(1296−144x+4x2)
Apply the distributive property
x×1296−x×144x+x×4x2
Use the commutative property to reorder the terms
1296x−x×144x+x×4x2
Multiply the terms
More Steps

Evaluate
x×144x
Use the commutative property to reorder the terms
144x×x
Multiply the terms
144x2
1296x−144x2+x×4x2
Solution
More Steps

Evaluate
x×4x2
Use the commutative property to reorder the terms
4x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
4x3
1296x−144x2+4x3
Show Solution

Factor the expression
4x(18−x)2
Evaluate
x(36−2x)2
Factor the expression
More Steps

Evaluate
(36−2x)2
Factor the expression
(2(18−x))2
Evaluate the power
4(18−x)2
x×4(18−x)2
Solution
4x(18−x)2
Show Solution

Find the roots
x1=0,x2=18
Evaluate
x(36−2x)2
To find the roots of the expression,set the expression equal to 0
x(36−2x)2=0
Separate the equation into 2 possible cases
x=0(36−2x)2=0
Solve the equation
More Steps

Evaluate
(36−2x)2=0
The only way a power can be 0 is when the base equals 0
36−2x=0
Move the constant to the right-hand side and change its sign
−2x=0−36
Removing 0 doesn't change the value,so remove it from the expression
−2x=−36
Change the signs on both sides of the equation
2x=36
Divide both sides
22x=236
Divide the numbers
x=236
Divide the numbers
More Steps

Evaluate
236
Reduce the numbers
118
Calculate
18
x=18
x=0x=18
Solution
x1=0,x2=18
Show Solution
